summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSon HO2024-06-21 23:24:01 +0200
committerGitHub2024-06-21 23:24:01 +0200
commit4d30546c809cb2c512e0c3fd8ee540fff1330eab (patch)
treed83926c9aa30f7bfb2a1c6db0e776003bca63355
parentf264b9dcc6331eb9149d951f308cdc61c8c02801 (diff)
Add some proofs for the Lean backend (#255)
* Make progress on the proofs of the hashmap * Make a minor modification to the hashmap * Make progress on the hashmap * Make progress on the proofs * Make progress on the proofs * Make progress on the proof of the hashmap * Progress on the proofs of the hashmap * Update a proof * Update the Charon pin * Make minor modifications to the hashmap * Regenerate the tests * Regenerate the hashmap * Add lemmas to the Lean backend * Make progress on the proofs of the hashmap * Make a minor fix * Finish the proof about the hashmap * Update scalar_tac * Make a minor modification in the hashmap * Update the proofs of the hashmap --------- Co-authored-by: Son Ho <sonho@Sons-MacBook-Pro.local> Co-authored-by: Son Ho <sonho@Sons-MBP.lan>
-rw-r--r--backends/lean/Base/Arith/Base.lean8
-rw-r--r--backends/lean/Base/Arith/Int.lean48
-rw-r--r--backends/lean/Base/Arith/Scalar.lean12
-rw-r--r--backends/lean/Base/IList/IList.lean23
-rw-r--r--backends/lean/Base/Primitives/ArraySlice.lean2
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean11
-rw-r--r--backends/lean/Base/Primitives/Vec.lean13
-rw-r--r--backends/lean/Base/Progress/Progress.lean6
-rw-r--r--backends/lean/Base/Utils.lean42
-rw-r--r--tests/coq/hashmap/Hashmap_Funs.v67
-rw-r--r--tests/coq/hashmap/Hashmap_Types.v2
-rw-r--r--tests/fstar/hashmap/Hashmap.Clauses.Template.fst8
-rw-r--r--tests/fstar/hashmap/Hashmap.Funs.fst55
-rw-r--r--tests/fstar/hashmap/Hashmap.Types.fst1
-rw-r--r--tests/lean/Hashmap/Funs.lean53
-rw-r--r--tests/lean/Hashmap/Properties.lean954
-rw-r--r--tests/lean/Hashmap/Types.lean1
-rw-r--r--tests/src/hashmap.rs22
18 files changed, 1163 insertions, 165 deletions
diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean
index fb6b12e5..320b4b53 100644
--- a/backends/lean/Base/Arith/Base.lean
+++ b/backends/lean/Base/Arith/Base.lean
@@ -52,10 +52,6 @@ theorem int_pos_ind (p : Int → Prop) :
rename_i m
cases m <;> simp_all
--- We sometimes need this to make sure no natural numbers appear in the goals
--- TODO: there is probably something more general to do
-theorem nat_zero_eq_int_zero : (0 : Nat) = (0 : Int) := by simp
-
-- This is mostly used in termination proofs
theorem to_int_to_nat_lt (x y : ℤ) (h0 : 0 ≤ x) (h1 : x < y) :
↑(x.toNat) < y := by
@@ -68,4 +64,8 @@ theorem to_int_sub_to_nat_lt (x y : ℤ) (x' : ℕ)
have : 0 ≤ x := by omega
simp [Int.toNat_sub_of_le, *]
+-- WARNING: do not use this with `simp` as it might loop. The left-hand side indeed reduces to the
+-- righ-hand side, meaning the rewriting can be applied to `n` itself.
+theorem ofNat_instOfNatNat_eq (n : Nat) : @OfNat.ofNat Nat n (instOfNatNat n) = n := by rfl
+
end Arith
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean
index 068d6f2f..b1927cfd 100644
--- a/backends/lean/Base/Arith/Int.lean
+++ b/backends/lean/Base/Arith/Int.lean
@@ -3,6 +3,7 @@
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
+import Mathlib.Tactic.Ring.RingNF
import Base.Utils
import Base.Arith.Base
@@ -111,7 +112,7 @@ def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.Tact
let hs := HashSet.empty
-- Explore the declarations
let decls ← ctx.getDecls
- let hs ← decls.foldlM (fun hs d => do
+ let hs ← decls.foldlM (fun hs d => do
-- Collect instances over all subexpressions in the context.
-- Note that we explore the *type* of the local declarations: if we have
-- for instance `h : A ∧ B` in the context, the expression itself is simply
@@ -154,7 +155,7 @@ def lookupHasIntPred (e : Expr) : MetaM (Option Expr) :=
lookupProp "lookupHasIntPred" ``HasIntPred e (fun term => pure #[term]) (fun _ => pure #[])
-- Collect the instances of `HasIntPred` for the subexpressions in the context
-def collectHasIntPredInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
+def collectHasIntPredInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
collectInstancesFromMainCtx lookupHasIntPred
-- Return an instance of `PropHasImp` for `e` if it has some
@@ -201,7 +202,7 @@ def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr))
-- Add a declaration
let nval ← Utils.addDeclTac name e type (asLet := false)
-- Simplify to unfold the declaration to unfold (i.e., the projector)
- Utils.simpAt true {} #[] [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
+ Utils.simpAt true {} [] [declToUnfold] [] [] (Location.targets #[mkIdent name] false)
-- Return the new value
pure nval
@@ -214,7 +215,7 @@ def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do
elab "intro_has_int_prop_instances" : tactic => do
let _ ← introHasIntPropInstances
-def introHasIntPredInstances : Tactic.TacticM (Array Expr) := do
+def introHasIntPredInstances : Tactic.TacticM (Array Expr) := do
trace[Arith] "Introducing the HasIntPred instances"
introInstances ``HasIntPred.concl lookupHasIntPred
@@ -230,6 +231,8 @@ def introPropHasImpInstances : Tactic.TacticM (Array Expr) := do
elab "intro_prop_has_imp_instances" : tactic => do
let _ ← introPropHasImpInstances
+def intTacSimpRocs : List Name := [``Int.reduceNegSucc, ``Int.reduceNeg]
+
/- Boosting a bit the `omega` tac.
-/
def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do
@@ -244,7 +247,33 @@ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM U
extraPreprocess
-- Reduce all the terms in the goal - note that the extra preprocessing step
-- might have proven the goal, hence the `Tactic.allGoals`
- Tactic.allGoals do tryTac (dsimpAt false {} #[] [] [] [] Tactic.Location.wildcard)
+ let dsimp :=
+ Tactic.allGoals do tryTac (
+ -- We set `simpOnly` at false on purpose
+ dsimpAt false {} intTacSimpRocs
+ -- Declarations to unfold
+ []
+ -- Theorems
+ []
+ [] Tactic.Location.wildcard)
+ dsimp
+ -- More preprocessing: apply norm_cast to the whole context
+ Tactic.allGoals (Utils.tryTac (Utils.normCastAtAll))
+ -- norm_cast does weird things with negative numbers so we reapply simp
+ dsimp
+ -- We also need this, in case the goal is: ¬ False
+ Tactic.allGoals do tryTac (
+ Utils.simpAt true {}
+ -- Simprocs
+ intTacSimpRocs
+ -- Unfoldings
+ []
+ -- Simp lemmas
+ [``not_false_eq_true]
+ -- Hypotheses
+ []
+ (.targets #[] true)
+ )
elab "int_tac_preprocess" : tactic =>
intTacPreprocess (do pure ())
@@ -260,8 +289,6 @@ def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic
-- Preprocess - wondering if we should do this before or after splitting
-- the goal. I think before leads to a smaller proof term?
Tactic.allGoals (intTacPreprocess extraPreprocess)
- -- More preprocessing
- Tactic.allGoals (Utils.tryTac (Utils.simpAt true {} #[] [] [``nat_zero_eq_int_zero] [] .wildcard))
-- Split the conjunctions in the goal
if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget)
-- Call omega
@@ -298,4 +325,11 @@ example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) :
example (a : Prop) (x : Int) (h0: 0 < x) (h1: x < 0) : a := by
int_tac
+-- Intermediate cast through natural numbers
+example (a : Prop) (x : Int) (h0: (0 : Nat) < x) (h1: x < 0) : a := by
+ int_tac
+
+example (x : Int) (h : x ≤ -3) : x ≤ -2 := by
+ int_tac
+
end Arith
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index ecc5acaf..31110b95 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -19,7 +19,7 @@ def scalarTacExtraPreprocess : Tactic.TacticM Unit := do
-- Reveal the concrete bounds, simplify calls to [ofInt]
Utils.simpAt true {}
-- Simprocs
- #[]
+ intTacSimpRocs
-- Unfoldings
[``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax,
``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min,
@@ -59,11 +59,11 @@ instance (ty : ScalarTy) : HasIntProp (Scalar ty) where
-- prop_ty is inferred
prop := λ x => And.intro x.hmin x.hmax
-example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
+example (x _y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
intro_has_int_prop_instances
simp [*]
-example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
+example (x _y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
scalar_tac
-- Checking that we explore the goal *and* projectors correctly
@@ -92,4 +92,10 @@ example (x : U32) (h0 : ¬ x = U32.ofInt 0) : 0 < x.val := by
example {u: U64} (h1: (u : Int) < 2): (u : Int) = 0 ∨ (u : Int) = 1 := by
scalar_tac
+example (x : I32) : -100000000000 < x.val := by
+ scalar_tac
+
+example : (Usize.ofInt 2).val ≠ 0 := by
+ scalar_tac
+
end Arith
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
index 96843f55..ab71daed 100644
--- a/backends/lean/Base/IList/IList.lean
+++ b/backends/lean/Base/IList/IList.lean
@@ -43,6 +43,9 @@ def index [Inhabited α] (ls : List α) (i : Int) : α :=
@[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index]
@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index]
+@[simp] theorem index_zero_lt_cons [Inhabited α] (hne : 0 < i) : index ((x :: tl) : List α) i = index tl (i - 1) := by
+ have : i ≠ 0 := by scalar_tac
+ simp [*, index]
theorem indexOpt_bounds (ls : List α) (i : Int) :
ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i :=
@@ -453,16 +456,18 @@ theorem index_update_eq
simp at *
apply index_update_eq <;> scalar_tac
-theorem update_map_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) :
+@[simp]
+theorem map_update_eq {α : Type u} {β : Type v} (ls : List α) (i : Int) (x : α) (f : α → β) :
(ls.update i x).map f = (ls.map f).update i (f x) :=
match ls with
| [] => by simp
| hd :: tl =>
if h : i = 0 then by simp [*]
else
- have hi := update_map_eq tl (i - 1) x f
+ have hi := map_update_eq tl (i - 1) x f
by simp [*]
+@[simp]
theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x : List α)
(h0 : 0 ≤ i) (h1 : i < ls.len) :
(ls.update i x).flatten.len = ls.flatten.len + x.len - (ls.index i).len :=
@@ -476,6 +481,20 @@ theorem len_flatten_update_eq {α : Type u} (ls : List (List α)) (i : Int) (x :
simp [*]
int_tac
+theorem len_index_le_len_flatten (ls : List (List α)) :
+ forall (i : Int), (ls.index i).len ≤ ls.flatten.len := by
+ induction ls <;> intro i <;> simp_all
+ . rw [List.index]
+ simp [default]
+ . rename ∀ _, _ => ih
+ if hi: i = 0 then
+ simp_all
+ int_tac
+ else
+ replace ih := ih (i - 1)
+ simp_all
+ int_tac
+
@[simp]
theorem index_map_eq {α : Type u} {β : Type v} [Inhabited α] [Inhabited β] (ls : List α) (i : Int) (f : α → β)
(h0 : 0 ≤ i) (h1 : i < ls.len) :
diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean
index be460987..899871af 100644
--- a/backends/lean/Base/Primitives/ArraySlice.lean
+++ b/backends/lean/Base/Primitives/ArraySlice.lean
@@ -129,7 +129,7 @@ example {a: Type u} (v : Slice a) : v.length ≤ Scalar.max ScalarTy.Usize := by
def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩
-- TODO: very annoying that the α is an explicit parameter
-def Slice.len (α : Type u) (v : Slice α) : Usize :=
+abbrev Slice.len (α : Type u) (v : Slice α) : Usize :=
Usize.ofIntCore v.val.len (by constructor <;> scalar_tac)
@[simp]
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index 9f809ead..31038e0d 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -1301,22 +1301,25 @@ instance {ty} : LT (Scalar ty) where
instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
--- Not marking this one with @[simp] on purpose
+-- Not marking this one with @[simp] on purpose: if we have `x = y` somewhere in the context,
+-- we may want to use it to substitute `y` with `x` somewhere.
+-- TODO: mark it as simp anyway?
theorem Scalar.eq_equiv {ty : ScalarTy} (x y : Scalar ty) :
x = y ↔ (↑x : Int) = ↑y := by
cases x; cases y; simp_all
-- This is sometimes useful when rewriting the goal with the local assumptions
+-- TODO: this doesn't get triggered
@[simp] theorem Scalar.eq_imp {ty : ScalarTy} (x y : Scalar ty) :
(↑x : Int) = ↑y → x = y := (eq_equiv x y).mpr
-theorem Scalar.lt_equiv {ty : ScalarTy} (x y : Scalar ty) :
+@[simp] theorem Scalar.lt_equiv {ty : ScalarTy} (x y : Scalar ty) :
x < y ↔ (↑x : Int) < ↑y := by simp [LT.lt]
@[simp] theorem Scalar.lt_imp {ty : ScalarTy} (x y : Scalar ty) :
(↑x : Int) < (↑y) → x < y := (lt_equiv x y).mpr
-theorem Scalar.le_equiv {ty : ScalarTy} (x y : Scalar ty) :
+@[simp] theorem Scalar.le_equiv {ty : ScalarTy} (x y : Scalar ty) :
x ≤ y ↔ (↑x : Int) ≤ ↑y := by simp [LE.le]
@[simp] theorem Scalar.le_imp {ty : ScalarTy} (x y : Scalar ty) :
@@ -1377,8 +1380,6 @@ theorem coe_max {ty: ScalarTy} (a b: Scalar ty): ↑(Max.max a b) = (Max.max (
-- TODO: there should be a shorter way to prove this.
rw [max_def, max_def]
split_ifs <;> simp_all
- refine' absurd _ (lt_irrefl a)
- exact lt_of_le_of_lt (by assumption) ((Scalar.lt_equiv _ _).2 (by assumption))
-- Max theory
-- TODO: do the min theory later on.
diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean
index 0b010944..e584777a 100644
--- a/backends/lean/Base/Primitives/Vec.lean
+++ b/backends/lean/Base/Primitives/Vec.lean
@@ -33,14 +33,15 @@ abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val
example {a: Type u} (v : Vec a) : v.length ≤ Scalar.max ScalarTy.Usize := by
scalar_tac
-def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩
+abbrev Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩
instance (α : Type u) : Inhabited (Vec α) := by
constructor
apply Vec.new
-- TODO: very annoying that the α is an explicit parameter
-def Vec.len (α : Type u) (v : Vec α) : Usize :=
+@[simp]
+abbrev Vec.len (α : Type u) (v : Vec α) : Usize :=
Usize.ofIntCore v.val.len (by constructor <;> scalar_tac)
@[simp]
@@ -63,6 +64,14 @@ def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
else
fail maximumSizeExceeded
+@[pspec]
+theorem Vec.push_spec {α : Type u} (v : Vec α) (x : α) (h : v.val.len < Usize.max) :
+ ∃ v1, v.push α x = ok v1 ∧
+ v1.val = v.val ++ [x] := by
+ simp [push]
+ split <;> simp_all [List.len_eq_length]
+ scalar_tac
+
-- This shouldn't be used
def Vec.insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit :=
if i.val < v.length then
diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean
index da601b73..35cc8399 100644
--- a/backends/lean/Base/Progress/Progress.lean
+++ b/backends/lean/Base/Progress/Progress.lean
@@ -131,7 +131,7 @@ def progressWith (fExpr : Expr) (th : TheoremOrLocal)
Tactic.focus do
let _ ←
tryTac
- (simpAt true {} #[] []
+ (simpAt true {} [] []
[``Primitives.bind_tc_ok, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div]
[hEq.fvarId!] (.targets #[] true))
-- It may happen that at this point the goal is already solved (though this is rare)
@@ -140,7 +140,7 @@ def progressWith (fExpr : Expr) (th : TheoremOrLocal)
else
trace[Progress] "goal after applying the eq and simplifying the binds: {← getMainGoal}"
-- TODO: remove this (some types get unfolded too much: we "fold" them back)
- let _ ← tryTac (simpAt true {} #[] [] scalar_eqs [] .wildcard_dep)
+ let _ ← tryTac (simpAt true {} [] [] scalar_eqs [] .wildcard_dep)
trace[Progress] "goal after folding back scalar types: {← getMainGoal}"
-- Clear the equality, unless the user requests not to do so
let mgoal ← do
@@ -410,7 +410,7 @@ namespace Test
-- This spec theorem is suboptimal, but it is good to check that it works
progress with Scalar.add_spec as ⟨ z, h1 .. ⟩
simp [*, h1]
-
+
example {x y : U32}
(hmax : x.val + y.val ≤ U32.max) :
∃ z, x + y = ok z ∧ z.val = x.val + y.val := by
diff --git a/backends/lean/Base/Utils.lean b/backends/lean/Base/Utils.lean
index 5954f048..b9de2fd1 100644
--- a/backends/lean/Base/Utils.lean
+++ b/backends/lean/Base/Utils.lean
@@ -664,21 +664,26 @@ example (h : ∃ x y z, x + y + z ≥ 0) : ∃ x, x ≥ 0 := by
Something very annoying is that there is no function which allows to
initialize a simp context without doing an elaboration - as a consequence
we write our own here. -/
-def mkSimpCtx (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
- Tactic.TacticM Simp.Context := do
+def mkSimpCtx (simpOnly : Bool) (config : Simp.Config) (kind : SimpKind)
+ (simprocs : List Name) (declsToUnfold : List Name)
+ (thms : List Name) (hypsToUse : List FVarId) :
+ Tactic.TacticM (Simp.Context × Simp.SimprocsArray) := do
-- Initialize either with the builtin simp theorems or with all the simp theorems
let simpThms ←
if simpOnly then Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems)
else getSimpTheorems
-- Add the equational theorem for the declarations to unfold
+ let addDeclToUnfold (thms : SimpTheorems) (decl : Name) : Tactic.TacticM SimpTheorems :=
+ if kind == .dsimp then pure (thms.addDeclToUnfoldCore decl)
+ else thms.addDeclToUnfold decl
let simpThms ←
- declsToUnfold.foldlM (fun thms decl => thms.addDeclToUnfold decl) simpThms
+ declsToUnfold.foldlM addDeclToUnfold simpThms
-- Add the hypotheses and the rewriting theorems
let simpThms ←
hypsToUse.foldlM (fun thms fvarId =>
- -- post: TODO: don't know what that is
+ -- post: TODO: don't know what that is. It seems to be true by default.
-- inv: invert the equality
- thms.add (.fvar fvarId) #[] (mkFVar fvarId) (post := false) (inv := false)
+ thms.add (.fvar fvarId) #[] (mkFVar fvarId) (post := true) (inv := false)
-- thms.eraseCore (.fvar fvar)
) simpThms
-- Add the rewriting theorems to use
@@ -693,7 +698,10 @@ def mkSimpCtx (simpOnly : Bool) (config : Simp.Config) (declsToUnfold : List Nam
throwError "Not a proposition: {thmName}"
) simpThms
let congrTheorems ← getSimpCongrTheorems
- pure { config, simpTheorems := #[simpThms], congrTheorems }
+ let defaultSimprocs ← if simpOnly then pure {} else Simp.getSimprocs
+ let simprocs ← simprocs.foldlM (fun simprocs name => simprocs.add name true) defaultSimprocs
+ let ctx := { config, simpTheorems := #[simpThms], congrTheorems }
+ pure (ctx, #[simprocs])
inductive Location where
/-- Apply the tactic everywhere. Same as `Tactic.Location.wildcard` -/
@@ -725,30 +733,30 @@ def customSimpLocation (ctx : Simp.Context) (simprocs : Simp.SimprocsArray) (dis
simpLocation.go ctx simprocs discharge? tgts (simplifyTarget := true)
/- Call the simp tactic. -/
-def simpAt (simpOnly : Bool) (config : Simp.Config) (simprocs : Simp.SimprocsArray)
+def simpAt (simpOnly : Bool) (config : Simp.Config) (simprocs : List Name)
(declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) (loc : Location) :
Tactic.TacticM Unit := do
-- Initialize the simp context
- let ctx ← mkSimpCtx simpOnly config declsToUnfold thms hypsToUse
+ let (ctx, simprocs) ← mkSimpCtx simpOnly config .simp simprocs declsToUnfold thms hypsToUse
-- Apply the simplifier
let _ ← customSimpLocation ctx simprocs (discharge? := .none) loc
/- Call the dsimp tactic. -/
-def dsimpAt (simpOnly : Bool) (config : Simp.Config) (simprocs : Simp.SimprocsArray)
+def dsimpAt (simpOnly : Bool) (config : Simp.Config) (simprocs : List Name)
(declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) (loc : Tactic.Location) :
Tactic.TacticM Unit := do
-- Initialize the simp context
- let ctx ← mkSimpCtx simpOnly config declsToUnfold thms hypsToUse
+ let (ctx, simprocs) ← mkSimpCtx simpOnly config .dsimp simprocs declsToUnfold thms hypsToUse
-- Apply the simplifier
dsimpLocation ctx simprocs loc
-- Call the simpAll tactic
-def simpAll (config : Simp.Config) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
+def simpAll (config : Simp.Config) (simprocs : List Name) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Unit := do
-- Initialize the simp context
- let ctx ← mkSimpCtx false config declsToUnfold thms hypsToUse
+ let (ctx, simprocs) ← mkSimpCtx false config .simpAll simprocs declsToUnfold thms hypsToUse
-- Apply the simplifier
- let _ ← Lean.Meta.simpAll (← getMainGoal) ctx
+ let _ ← Lean.Meta.simpAll (← getMainGoal) ctx simprocs
/- Adapted from Elab.Tactic.Rewrite -/
def rewriteTarget (eqThm : Expr) (symm : Bool) (config : Rewrite.Config := {}) : TacticM Unit := do
@@ -811,4 +819,12 @@ def rewriteAt (cfg : Rewrite.Config) (rpt : Bool)
else
evalRewriteSeqAux cfg thms loc
+/-- Apply norm_cast to the whole context -/
+def normCastAtAll : TacticM Unit := do
+ withMainContext do
+ let ctx ← Lean.MonadLCtx.getLCtx
+ let decls ← ctx.getDecls
+ NormCast.normCastTarget
+ decls.forM (fun d => NormCast.normCastHyp d.fvarId)
+
end Utils
diff --git a/tests/coq/hashmap/Hashmap_Funs.v b/tests/coq/hashmap/Hashmap_Funs.v
index 39bd5098..bd3b57cc 100644
--- a/tests/coq/hashmap/Hashmap_Funs.v
+++ b/tests/coq/hashmap/Hashmap_Funs.v
@@ -18,7 +18,7 @@ Definition hash_key (k : usize) : result usize :=
Ok k.
(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 61:4-67:5 *)
+ Source: 'tests/src/hashmap.rs', lines 63:4-69:5 *)
Fixpoint hashMap_allocate_slots_loop
(T : Type) (n : nat) (slots : alloc_vec_Vec (AList_t T)) (n1 : usize) :
result (alloc_vec_Vec (AList_t T))
@@ -36,7 +36,7 @@ Fixpoint hashMap_allocate_slots_loop
.
(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]:
- Source: 'tests/src/hashmap.rs', lines 61:4-61:78 *)
+ Source: 'tests/src/hashmap.rs', lines 63:4-63:78 *)
Definition hashMap_allocate_slots
(T : Type) (n : nat) (slots : alloc_vec_Vec (AList_t T)) (n1 : usize) :
result (alloc_vec_Vec (AList_t T))
@@ -45,7 +45,7 @@ Definition hashMap_allocate_slots
.
(** [hashmap::{hashmap::HashMap<T>}::new_with_capacity]:
- Source: 'tests/src/hashmap.rs', lines 70:4-74:13 *)
+ Source: 'tests/src/hashmap.rs', lines 72:4-76:13 *)
Definition hashMap_new_with_capacity
(T : Type) (n : nat) (capacity : usize) (max_load_dividend : usize)
(max_load_divisor : usize) :
@@ -59,18 +59,19 @@ Definition hashMap_new_with_capacity
hashMap_num_entries := 0%usize;
hashMap_max_load_factor := (max_load_dividend, max_load_divisor);
hashMap_max_load := i1;
+ hashMap_saturated := false;
hashMap_slots := slots
|}
.
(** [hashmap::{hashmap::HashMap<T>}::new]:
- Source: 'tests/src/hashmap.rs', lines 86:4-86:24 *)
+ Source: 'tests/src/hashmap.rs', lines 89:4-89:24 *)
Definition hashMap_new (T : Type) (n : nat) : result (HashMap_t T) :=
hashMap_new_with_capacity T n 32%usize 4%usize 5%usize
.
(** [hashmap::{hashmap::HashMap<T>}::clear]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 94:8-99:5 *)
+ Source: 'tests/src/hashmap.rs', lines 97:8-102:5 *)
Fixpoint hashMap_clear_loop
(T : Type) (n : nat) (slots : alloc_vec_Vec (AList_t T)) (i : usize) :
result (alloc_vec_Vec (AList_t T))
@@ -93,7 +94,7 @@ Fixpoint hashMap_clear_loop
.
(** [hashmap::{hashmap::HashMap<T>}::clear]:
- Source: 'tests/src/hashmap.rs', lines 91:4-91:27 *)
+ Source: 'tests/src/hashmap.rs', lines 94:4-94:27 *)
Definition hashMap_clear
(T : Type) (n : nat) (self : HashMap_t T) : result (HashMap_t T) :=
hm <- hashMap_clear_loop T n self.(hashMap_slots) 0%usize;
@@ -102,18 +103,19 @@ Definition hashMap_clear
hashMap_num_entries := 0%usize;
hashMap_max_load_factor := self.(hashMap_max_load_factor);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := hm
|}
.
(** [hashmap::{hashmap::HashMap<T>}::len]:
- Source: 'tests/src/hashmap.rs', lines 101:4-101:30 *)
+ Source: 'tests/src/hashmap.rs', lines 104:4-104:30 *)
Definition hashMap_len (T : Type) (self : HashMap_t T) : result usize :=
Ok self.(hashMap_num_entries)
.
(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 108:4-125:5 *)
+ Source: 'tests/src/hashmap.rs', lines 111:4-128:5 *)
Fixpoint hashMap_insert_in_list_loop
(T : Type) (n : nat) (key : usize) (value : T) (ls : AList_t T) :
result (bool * (AList_t T))
@@ -135,7 +137,7 @@ Fixpoint hashMap_insert_in_list_loop
.
(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]:
- Source: 'tests/src/hashmap.rs', lines 108:4-108:72 *)
+ Source: 'tests/src/hashmap.rs', lines 111:4-111:72 *)
Definition hashMap_insert_in_list
(T : Type) (n : nat) (key : usize) (value : T) (ls : AList_t T) :
result (bool * (AList_t T))
@@ -144,7 +146,7 @@ Definition hashMap_insert_in_list
.
(** [hashmap::{hashmap::HashMap<T>}::insert_no_resize]:
- Source: 'tests/src/hashmap.rs', lines 128:4-128:54 *)
+ Source: 'tests/src/hashmap.rs', lines 131:4-131:54 *)
Definition hashMap_insert_no_resize
(T : Type) (n : nat) (self : HashMap_t T) (key : usize) (value : T) :
result (HashMap_t T)
@@ -168,6 +170,7 @@ Definition hashMap_insert_no_resize
hashMap_num_entries := i1;
hashMap_max_load_factor := self.(hashMap_max_load_factor);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := v
|})
else (
@@ -177,6 +180,7 @@ Definition hashMap_insert_no_resize
hashMap_num_entries := self.(hashMap_num_entries);
hashMap_max_load_factor := self.(hashMap_max_load_factor);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := v
|})
.
@@ -209,7 +213,7 @@ Definition hashMap_move_elements_from_list
.
(** [hashmap::{hashmap::HashMap<T>}::move_elements]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 182:4-191:5 *)
+ Source: 'tests/src/hashmap.rs', lines 182:8-191:5 *)
Fixpoint hashMap_move_elements_loop
(T : Type) (n : nat) (ntable : HashMap_t T)
(slots : alloc_vec_Vec (AList_t T)) (i : usize) :
@@ -235,35 +239,35 @@ Fixpoint hashMap_move_elements_loop
.
(** [hashmap::{hashmap::HashMap<T>}::move_elements]:
- Source: 'tests/src/hashmap.rs', lines 182:4-182:96 *)
+ Source: 'tests/src/hashmap.rs', lines 181:4-181:82 *)
Definition hashMap_move_elements
(T : Type) (n : nat) (ntable : HashMap_t T)
- (slots : alloc_vec_Vec (AList_t T)) (i : usize) :
+ (slots : alloc_vec_Vec (AList_t T)) :
result ((HashMap_t T) * (alloc_vec_Vec (AList_t T)))
:=
- hashMap_move_elements_loop T n ntable slots i
+ hashMap_move_elements_loop T n ntable slots 0%usize
.
(** [hashmap::{hashmap::HashMap<T>}::try_resize]:
- Source: 'tests/src/hashmap.rs', lines 151:4-151:28 *)
+ Source: 'tests/src/hashmap.rs', lines 154:4-154:28 *)
Definition hashMap_try_resize
(T : Type) (n : nat) (self : HashMap_t T) : result (HashMap_t T) :=
- max_usize <- scalar_cast U32 Usize core_u32_max;
let capacity := alloc_vec_Vec_len (AList_t T) self.(hashMap_slots) in
- n1 <- usize_div max_usize 2%usize;
+ n1 <- usize_div core_usize_max 2%usize;
let (i, i1) := self.(hashMap_max_load_factor) in
i2 <- usize_div n1 i;
if capacity s<= i2
then (
i3 <- usize_mul capacity 2%usize;
ntable <- hashMap_new_with_capacity T n i3 i i1;
- p <- hashMap_move_elements T n ntable self.(hashMap_slots) 0%usize;
+ p <- hashMap_move_elements T n ntable self.(hashMap_slots);
let (ntable1, _) := p in
Ok
{|
hashMap_num_entries := self.(hashMap_num_entries);
hashMap_max_load_factor := (i, i1);
hashMap_max_load := ntable1.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := ntable1.(hashMap_slots)
|})
else
@@ -272,12 +276,13 @@ Definition hashMap_try_resize
hashMap_num_entries := self.(hashMap_num_entries);
hashMap_max_load_factor := (i, i1);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := true;
hashMap_slots := self.(hashMap_slots)
|}
.
(** [hashmap::{hashmap::HashMap<T>}::insert]:
- Source: 'tests/src/hashmap.rs', lines 140:4-140:48 *)
+ Source: 'tests/src/hashmap.rs', lines 143:4-143:48 *)
Definition hashMap_insert
(T : Type) (n : nat) (self : HashMap_t T) (key : usize) (value : T) :
result (HashMap_t T)
@@ -285,7 +290,26 @@ Definition hashMap_insert
self1 <- hashMap_insert_no_resize T n self key value;
i <- hashMap_len T self1;
if i s> self1.(hashMap_max_load)
- then hashMap_try_resize T n self1
+ then
+ if self1.(hashMap_saturated)
+ then
+ Ok
+ {|
+ hashMap_num_entries := self1.(hashMap_num_entries);
+ hashMap_max_load_factor := self1.(hashMap_max_load_factor);
+ hashMap_max_load := self1.(hashMap_max_load);
+ hashMap_saturated := true;
+ hashMap_slots := self1.(hashMap_slots)
+ |}
+ else
+ hashMap_try_resize T n
+ {|
+ hashMap_num_entries := self1.(hashMap_num_entries);
+ hashMap_max_load_factor := self1.(hashMap_max_load_factor);
+ hashMap_max_load := self1.(hashMap_max_load);
+ hashMap_saturated := false;
+ hashMap_slots := self1.(hashMap_slots)
+ |}
else Ok self1
.
@@ -423,6 +447,7 @@ Definition hashMap_get_mut
hashMap_num_entries := self.(hashMap_num_entries);
hashMap_max_load_factor := self.(hashMap_max_load_factor);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := v
|} in
Ok (t, back)
@@ -489,6 +514,7 @@ Definition hashMap_remove
hashMap_num_entries := self.(hashMap_num_entries);
hashMap_max_load_factor := self.(hashMap_max_load_factor);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := v
|})
| Some x1 =>
@@ -499,6 +525,7 @@ Definition hashMap_remove
hashMap_num_entries := i1;
hashMap_max_load_factor := self.(hashMap_max_load_factor);
hashMap_max_load := self.(hashMap_max_load);
+ hashMap_saturated := self.(hashMap_saturated);
hashMap_slots := v
|})
end
diff --git a/tests/coq/hashmap/Hashmap_Types.v b/tests/coq/hashmap/Hashmap_Types.v
index 070d6dfb..bd582254 100644
--- a/tests/coq/hashmap/Hashmap_Types.v
+++ b/tests/coq/hashmap/Hashmap_Types.v
@@ -27,6 +27,7 @@ mkHashMap_t {
hashMap_num_entries : usize;
hashMap_max_load_factor : (usize * usize);
hashMap_max_load : usize;
+ hashMap_saturated : bool;
hashMap_slots : alloc_vec_Vec (AList_t T);
}
.
@@ -35,6 +36,7 @@ Arguments mkHashMap_t { _ }.
Arguments hashMap_num_entries { _ }.
Arguments hashMap_max_load_factor { _ }.
Arguments hashMap_max_load { _ }.
+Arguments hashMap_saturated { _ }.
Arguments hashMap_slots { _ }.
End Hashmap_Types.
diff --git a/tests/fstar/hashmap/Hashmap.Clauses.Template.fst b/tests/fstar/hashmap/Hashmap.Clauses.Template.fst
index d6ba503e..21789c69 100644
--- a/tests/fstar/hashmap/Hashmap.Clauses.Template.fst
+++ b/tests/fstar/hashmap/Hashmap.Clauses.Template.fst
@@ -7,21 +7,21 @@ open Hashmap.Types
#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]: decreases clause
- Source: 'tests/src/hashmap.rs', lines 61:4-67:5 *)
+ Source: 'tests/src/hashmap.rs', lines 63:4-69:5 *)
unfold
let hashMap_allocate_slots_loop_decreases (t : Type0)
(slots : alloc_vec_Vec (aList_t t)) (n : usize) : nat =
admit ()
(** [hashmap::{hashmap::HashMap<T>}::clear]: decreases clause
- Source: 'tests/src/hashmap.rs', lines 94:8-99:5 *)
+ Source: 'tests/src/hashmap.rs', lines 97:8-102:5 *)
unfold
let hashMap_clear_loop_decreases (t : Type0)
(slots : alloc_vec_Vec (aList_t t)) (i : usize) : nat =
admit ()
(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: decreases clause
- Source: 'tests/src/hashmap.rs', lines 108:4-125:5 *)
+ Source: 'tests/src/hashmap.rs', lines 111:4-128:5 *)
unfold
let hashMap_insert_in_list_loop_decreases (t : Type0) (key : usize) (value : t)
(ls : aList_t t) : nat =
@@ -35,7 +35,7 @@ let hashMap_move_elements_from_list_loop_decreases (t : Type0)
admit ()
(** [hashmap::{hashmap::HashMap<T>}::move_elements]: decreases clause
- Source: 'tests/src/hashmap.rs', lines 182:4-191:5 *)
+ Source: 'tests/src/hashmap.rs', lines 182:8-191:5 *)
unfold
let hashMap_move_elements_loop_decreases (t : Type0) (ntable : hashMap_t t)
(slots : alloc_vec_Vec (aList_t t)) (i : usize) : nat =
diff --git a/tests/fstar/hashmap/Hashmap.Funs.fst b/tests/fstar/hashmap/Hashmap.Funs.fst
index 40362176..223bde57 100644
--- a/tests/fstar/hashmap/Hashmap.Funs.fst
+++ b/tests/fstar/hashmap/Hashmap.Funs.fst
@@ -14,7 +14,7 @@ let hash_key (k : usize) : result usize =
Ok k
(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 61:4-67:5 *)
+ Source: 'tests/src/hashmap.rs', lines 63:4-69:5 *)
let rec hashMap_allocate_slots_loop
(t : Type0) (slots : alloc_vec_Vec (aList_t t)) (n : usize) :
Tot (result (alloc_vec_Vec (aList_t t)))
@@ -28,7 +28,7 @@ let rec hashMap_allocate_slots_loop
else Ok slots
(** [hashmap::{hashmap::HashMap<T>}::allocate_slots]:
- Source: 'tests/src/hashmap.rs', lines 61:4-61:78 *)
+ Source: 'tests/src/hashmap.rs', lines 63:4-63:78 *)
let hashMap_allocate_slots
(t : Type0) (slots : alloc_vec_Vec (aList_t t)) (n : usize) :
result (alloc_vec_Vec (aList_t t))
@@ -36,7 +36,7 @@ let hashMap_allocate_slots
hashMap_allocate_slots_loop t slots n
(** [hashmap::{hashmap::HashMap<T>}::new_with_capacity]:
- Source: 'tests/src/hashmap.rs', lines 70:4-74:13 *)
+ Source: 'tests/src/hashmap.rs', lines 72:4-76:13 *)
let hashMap_new_with_capacity
(t : Type0) (capacity : usize) (max_load_dividend : usize)
(max_load_divisor : usize) :
@@ -51,16 +51,17 @@ let hashMap_new_with_capacity
num_entries = 0;
max_load_factor = (max_load_dividend, max_load_divisor);
max_load = i1;
+ saturated = false;
slots = slots
}
(** [hashmap::{hashmap::HashMap<T>}::new]:
- Source: 'tests/src/hashmap.rs', lines 86:4-86:24 *)
+ Source: 'tests/src/hashmap.rs', lines 89:4-89:24 *)
let hashMap_new (t : Type0) : result (hashMap_t t) =
hashMap_new_with_capacity t 32 4 5
(** [hashmap::{hashmap::HashMap<T>}::clear]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 94:8-99:5 *)
+ Source: 'tests/src/hashmap.rs', lines 97:8-102:5 *)
let rec hashMap_clear_loop
(t : Type0) (slots : alloc_vec_Vec (aList_t t)) (i : usize) :
Tot (result (alloc_vec_Vec (aList_t t)))
@@ -78,18 +79,18 @@ let rec hashMap_clear_loop
else Ok slots
(** [hashmap::{hashmap::HashMap<T>}::clear]:
- Source: 'tests/src/hashmap.rs', lines 91:4-91:27 *)
+ Source: 'tests/src/hashmap.rs', lines 94:4-94:27 *)
let hashMap_clear (t : Type0) (self : hashMap_t t) : result (hashMap_t t) =
let* hm = hashMap_clear_loop t self.slots 0 in
Ok { self with num_entries = 0; slots = hm }
(** [hashmap::{hashmap::HashMap<T>}::len]:
- Source: 'tests/src/hashmap.rs', lines 101:4-101:30 *)
+ Source: 'tests/src/hashmap.rs', lines 104:4-104:30 *)
let hashMap_len (t : Type0) (self : hashMap_t t) : result usize =
Ok self.num_entries
(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 108:4-125:5 *)
+ Source: 'tests/src/hashmap.rs', lines 111:4-128:5 *)
let rec hashMap_insert_in_list_loop
(t : Type0) (key : usize) (value : t) (ls : aList_t t) :
Tot (result (bool & (aList_t t)))
@@ -106,7 +107,7 @@ let rec hashMap_insert_in_list_loop
end
(** [hashmap::{hashmap::HashMap<T>}::insert_in_list]:
- Source: 'tests/src/hashmap.rs', lines 108:4-108:72 *)
+ Source: 'tests/src/hashmap.rs', lines 111:4-111:72 *)
let hashMap_insert_in_list
(t : Type0) (key : usize) (value : t) (ls : aList_t t) :
result (bool & (aList_t t))
@@ -114,7 +115,7 @@ let hashMap_insert_in_list
hashMap_insert_in_list_loop t key value ls
(** [hashmap::{hashmap::HashMap<T>}::insert_no_resize]:
- Source: 'tests/src/hashmap.rs', lines 128:4-128:54 *)
+ Source: 'tests/src/hashmap.rs', lines 131:4-131:54 *)
let hashMap_insert_no_resize
(t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
result (hashMap_t t)
@@ -155,7 +156,7 @@ let hashMap_move_elements_from_list
hashMap_move_elements_from_list_loop t ntable ls
(** [hashmap::{hashmap::HashMap<T>}::move_elements]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 182:4-191:5 *)
+ Source: 'tests/src/hashmap.rs', lines 182:8-191:5 *)
let rec hashMap_move_elements_loop
(t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (aList_t t))
(i : usize) :
@@ -176,43 +177,51 @@ let rec hashMap_move_elements_loop
else Ok (ntable, slots)
(** [hashmap::{hashmap::HashMap<T>}::move_elements]:
- Source: 'tests/src/hashmap.rs', lines 182:4-182:96 *)
+ Source: 'tests/src/hashmap.rs', lines 181:4-181:82 *)
let hashMap_move_elements
- (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (aList_t t))
- (i : usize) :
+ (t : Type0) (ntable : hashMap_t t) (slots : alloc_vec_Vec (aList_t t)) :
result ((hashMap_t t) & (alloc_vec_Vec (aList_t t)))
=
- hashMap_move_elements_loop t ntable slots i
+ hashMap_move_elements_loop t ntable slots 0
(** [hashmap::{hashmap::HashMap<T>}::try_resize]:
- Source: 'tests/src/hashmap.rs', lines 151:4-151:28 *)
+ Source: 'tests/src/hashmap.rs', lines 154:4-154:28 *)
let hashMap_try_resize
(t : Type0) (self : hashMap_t t) : result (hashMap_t t) =
- let* max_usize = scalar_cast U32 Usize core_u32_max in
let capacity = alloc_vec_Vec_len (aList_t t) self.slots in
- let* n1 = usize_div max_usize 2 in
+ let* n1 = usize_div core_usize_max 2 in
let (i, i1) = self.max_load_factor in
let* i2 = usize_div n1 i in
if capacity <= i2
then
let* i3 = usize_mul capacity 2 in
let* ntable = hashMap_new_with_capacity t i3 i i1 in
- let* p = hashMap_move_elements t ntable self.slots 0 in
+ let* p = hashMap_move_elements t ntable self.slots in
let (ntable1, _) = p in
Ok
- { ntable1 with num_entries = self.num_entries; max_load_factor = (i, i1)
+ {
+ self
+ with
+ max_load_factor = (i, i1);
+ max_load = ntable1.max_load;
+ slots = ntable1.slots
}
- else Ok { self with max_load_factor = (i, i1) }
+ else Ok { self with max_load_factor = (i, i1); saturated = true }
(** [hashmap::{hashmap::HashMap<T>}::insert]:
- Source: 'tests/src/hashmap.rs', lines 140:4-140:48 *)
+ Source: 'tests/src/hashmap.rs', lines 143:4-143:48 *)
let hashMap_insert
(t : Type0) (self : hashMap_t t) (key : usize) (value : t) :
result (hashMap_t t)
=
let* self1 = hashMap_insert_no_resize t self key value in
let* i = hashMap_len t self1 in
- if i > self1.max_load then hashMap_try_resize t self1 else Ok self1
+ if i > self1.max_load
+ then
+ if self1.saturated
+ then Ok { self1 with saturated = true }
+ else hashMap_try_resize t { self1 with saturated = false }
+ else Ok self1
(** [hashmap::{hashmap::HashMap<T>}::contains_key_in_list]: loop 0:
Source: 'tests/src/hashmap.rs', lines 217:4-230:5 *)
diff --git a/tests/fstar/hashmap/Hashmap.Types.fst b/tests/fstar/hashmap/Hashmap.Types.fst
index a10bd16c..accc5e21 100644
--- a/tests/fstar/hashmap/Hashmap.Types.fst
+++ b/tests/fstar/hashmap/Hashmap.Types.fst
@@ -19,6 +19,7 @@ type hashMap_t (t : Type0) =
num_entries : usize;
max_load_factor : (usize & usize);
max_load : usize;
+ saturated : bool;
slots : alloc_vec_Vec (aList_t t);
}
diff --git a/tests/lean/Hashmap/Funs.lean b/tests/lean/Hashmap/Funs.lean
index 76ec5041..f01f1c4f 100644
--- a/tests/lean/Hashmap/Funs.lean
+++ b/tests/lean/Hashmap/Funs.lean
@@ -16,7 +16,7 @@ def hash_key (k : Usize) : Result Usize :=
Result.ok k
/- [hashmap::{hashmap::HashMap<T>}::allocate_slots]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 61:4-67:5 -/
+ Source: 'tests/src/hashmap.rs', lines 63:4-69:5 -/
divergent def HashMap.allocate_slots_loop
(T : Type) (slots : alloc.vec.Vec (AList T)) (n : Usize) :
Result (alloc.vec.Vec (AList T))
@@ -30,7 +30,7 @@ divergent def HashMap.allocate_slots_loop
else Result.ok slots
/- [hashmap::{hashmap::HashMap<T>}::allocate_slots]:
- Source: 'tests/src/hashmap.rs', lines 61:4-61:78 -/
+ Source: 'tests/src/hashmap.rs', lines 63:4-63:78 -/
@[reducible]
def HashMap.allocate_slots
(T : Type) (slots : alloc.vec.Vec (AList T)) (n : Usize) :
@@ -39,7 +39,7 @@ def HashMap.allocate_slots
HashMap.allocate_slots_loop T slots n
/- [hashmap::{hashmap::HashMap<T>}::new_with_capacity]:
- Source: 'tests/src/hashmap.rs', lines 70:4-74:13 -/
+ Source: 'tests/src/hashmap.rs', lines 72:4-76:13 -/
def HashMap.new_with_capacity
(T : Type) (capacity : Usize) (max_load_dividend : Usize)
(max_load_divisor : Usize) :
@@ -54,16 +54,17 @@ def HashMap.new_with_capacity
num_entries := 0#usize,
max_load_factor := (max_load_dividend, max_load_divisor),
max_load := i1,
+ saturated := false,
slots := slots
}
/- [hashmap::{hashmap::HashMap<T>}::new]:
- Source: 'tests/src/hashmap.rs', lines 86:4-86:24 -/
+ Source: 'tests/src/hashmap.rs', lines 89:4-89:24 -/
def HashMap.new (T : Type) : Result (HashMap T) :=
HashMap.new_with_capacity T 32#usize 4#usize 5#usize
/- [hashmap::{hashmap::HashMap<T>}::clear]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 94:8-99:5 -/
+ Source: 'tests/src/hashmap.rs', lines 97:8-102:5 -/
divergent def HashMap.clear_loop
(T : Type) (slots : alloc.vec.Vec (AList T)) (i : Usize) :
Result (alloc.vec.Vec (AList T))
@@ -81,19 +82,19 @@ divergent def HashMap.clear_loop
else Result.ok slots
/- [hashmap::{hashmap::HashMap<T>}::clear]:
- Source: 'tests/src/hashmap.rs', lines 91:4-91:27 -/
+ Source: 'tests/src/hashmap.rs', lines 94:4-94:27 -/
def HashMap.clear (T : Type) (self : HashMap T) : Result (HashMap T) :=
do
let hm ← HashMap.clear_loop T self.slots 0#usize
Result.ok { self with num_entries := 0#usize, slots := hm }
/- [hashmap::{hashmap::HashMap<T>}::len]:
- Source: 'tests/src/hashmap.rs', lines 101:4-101:30 -/
+ Source: 'tests/src/hashmap.rs', lines 104:4-104:30 -/
def HashMap.len (T : Type) (self : HashMap T) : Result Usize :=
Result.ok self.num_entries
/- [hashmap::{hashmap::HashMap<T>}::insert_in_list]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 108:4-125:5 -/
+ Source: 'tests/src/hashmap.rs', lines 111:4-128:5 -/
divergent def HashMap.insert_in_list_loop
(T : Type) (key : Usize) (value : T) (ls : AList T) :
Result (Bool × (AList T))
@@ -109,7 +110,7 @@ divergent def HashMap.insert_in_list_loop
| AList.Nil => Result.ok (true, AList.Cons key value AList.Nil)
/- [hashmap::{hashmap::HashMap<T>}::insert_in_list]:
- Source: 'tests/src/hashmap.rs', lines 108:4-108:72 -/
+ Source: 'tests/src/hashmap.rs', lines 111:4-111:72 -/
@[reducible]
def HashMap.insert_in_list
(T : Type) (key : Usize) (value : T) (ls : AList T) :
@@ -118,7 +119,7 @@ def HashMap.insert_in_list
HashMap.insert_in_list_loop T key value ls
/- [hashmap::{hashmap::HashMap<T>}::insert_no_resize]:
- Source: 'tests/src/hashmap.rs', lines 128:4-128:54 -/
+ Source: 'tests/src/hashmap.rs', lines 131:4-131:54 -/
def HashMap.insert_no_resize
(T : Type) (self : HashMap T) (key : Usize) (value : T) :
Result (HashMap T)
@@ -161,7 +162,7 @@ def HashMap.move_elements_from_list
HashMap.move_elements_from_list_loop T ntable ls
/- [hashmap::{hashmap::HashMap<T>}::move_elements]: loop 0:
- Source: 'tests/src/hashmap.rs', lines 182:4-191:5 -/
+ Source: 'tests/src/hashmap.rs', lines 182:8-191:5 -/
divergent def HashMap.move_elements_loop
(T : Type) (ntable : HashMap T) (slots : alloc.vec.Vec (AList T)) (i : Usize)
:
@@ -182,22 +183,19 @@ divergent def HashMap.move_elements_loop
else Result.ok (ntable, slots)
/- [hashmap::{hashmap::HashMap<T>}::move_elements]:
- Source: 'tests/src/hashmap.rs', lines 182:4-182:96 -/
-@[reducible]
+ Source: 'tests/src/hashmap.rs', lines 181:4-181:82 -/
def HashMap.move_elements
- (T : Type) (ntable : HashMap T) (slots : alloc.vec.Vec (AList T)) (i : Usize)
- :
+ (T : Type) (ntable : HashMap T) (slots : alloc.vec.Vec (AList T)) :
Result ((HashMap T) × (alloc.vec.Vec (AList T)))
:=
- HashMap.move_elements_loop T ntable slots i
+ HashMap.move_elements_loop T ntable slots 0#usize
/- [hashmap::{hashmap::HashMap<T>}::try_resize]:
- Source: 'tests/src/hashmap.rs', lines 151:4-151:28 -/
+ Source: 'tests/src/hashmap.rs', lines 154:4-154:28 -/
def HashMap.try_resize (T : Type) (self : HashMap T) : Result (HashMap T) :=
do
- let max_usize ← Scalar.cast .Usize core_u32_max
let capacity := alloc.vec.Vec.len (AList T) self.slots
- let n1 ← max_usize / 2#usize
+ let n1 ← core_usize_max / 2#usize
let (i, i1) := self.max_load_factor
let i2 ← n1 / i
if capacity <= i2
@@ -205,18 +203,20 @@ def HashMap.try_resize (T : Type) (self : HashMap T) : Result (HashMap T) :=
do
let i3 ← capacity * 2#usize
let ntable ← HashMap.new_with_capacity T i3 i i1
- let p ← HashMap.move_elements T ntable self.slots 0#usize
+ let p ← HashMap.move_elements T ntable self.slots
let (ntable1, _) := p
Result.ok
{
- ntable1
+ self
with
- num_entries := self.num_entries, max_load_factor := (i, i1)
+ max_load_factor := (i, i1),
+ max_load := ntable1.max_load,
+ slots := ntable1.slots
}
- else Result.ok { self with max_load_factor := (i, i1) }
+ else Result.ok { self with max_load_factor := (i, i1), saturated := true }
/- [hashmap::{hashmap::HashMap<T>}::insert]:
- Source: 'tests/src/hashmap.rs', lines 140:4-140:48 -/
+ Source: 'tests/src/hashmap.rs', lines 143:4-143:48 -/
def HashMap.insert
(T : Type) (self : HashMap T) (key : Usize) (value : T) :
Result (HashMap T)
@@ -225,7 +225,10 @@ def HashMap.insert
let self1 ← HashMap.insert_no_resize T self key value
let i ← HashMap.len T self1
if i > self1.max_load
- then HashMap.try_resize T self1
+ then
+ if self1.saturated
+ then Result.ok { self1 with saturated := true }
+ else HashMap.try_resize T { self1 with saturated := false }
else Result.ok self1
/- [hashmap::{hashmap::HashMap<T>}::contains_key_in_list]: loop 0:
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean
index 29b5834b..246041f4 100644
--- a/tests/lean/Hashmap/Properties.lean
+++ b/tests/lean/Hashmap/Properties.lean
@@ -67,13 +67,31 @@ theorem hash_mod_key_eq : hash_mod_key k l = k.val % l := by
def slot_s_inv_hash (l i : Int) (ls : List (Usize × α)) : Prop :=
ls.allP (λ (k, _) => hash_mod_key k l = i)
-@[simp]
def slot_s_inv (l i : Int) (ls : List (Usize × α)) : Prop :=
distinct_keys ls ∧
slot_s_inv_hash l i ls
def slot_t_inv (l i : Int) (s : AList α) : Prop := slot_s_inv l i s.v
+@[simp] theorem distinct_keys_nil : @distinct_keys α [] := by simp [distinct_keys]
+@[simp] theorem slot_s_inv_hash_nil : @slot_s_inv_hash l i α [] := by simp [slot_s_inv_hash]
+@[simp] theorem slot_s_inv_nil : @slot_s_inv α l i [] := by simp [slot_s_inv]
+@[simp] theorem slot_t_inv_nil : @slot_t_inv α l i .Nil := by simp [slot_t_inv]
+
+@[simp] theorem distinct_keys_cons (kv : Usize × α) (tl : List (Usize × α)) :
+ distinct_keys (kv :: tl) ↔ ((tl.allP fun (k', _) => ¬↑kv.1 = ↑k') ∧ distinct_keys tl) := by simp [distinct_keys]
+
+@[simp] theorem slot_s_inv_hash_cons (kv : Usize × α) (tl : List (Usize × α)) :
+ slot_s_inv_hash l i (kv :: tl) ↔
+ (hash_mod_key kv.1 l = i ∧ tl.allP (λ (k, _) => hash_mod_key k l = i) ∧ slot_s_inv_hash l i tl) :=
+ by simp [slot_s_inv_hash]
+
+@[simp] theorem slot_s_inv_cons (kv : Usize × α) (tl : List (Usize × α)) :
+ slot_s_inv l i (kv :: tl) ↔
+ ((tl.allP fun (k', _) => ¬↑kv.1 = ↑k') ∧ distinct_keys tl ∧
+ hash_mod_key kv.1 l = i ∧ tl.allP (λ (k, _) => hash_mod_key k l = i) ∧ slot_s_inv l i tl) := by
+ simp [slot_s_inv]; tauto
+
-- Interpret the hashmap as a list of lists
def v (hm : HashMap α) : List (List (Usize × α)) :=
hm.slots.val.map AList.v
@@ -94,26 +112,175 @@ def slots_t_inv (s : alloc.vec.Vec (AList α)) : Prop :=
slots_s_inv s.v
@[simp]
-def base_inv (hm : HashMap α) : Prop :=
+def slots_s_lookup (s : List (AList α)) (k : Usize) : Option α :=
+ let i := hash_mod_key k s.len
+ let slot := s.index i
+ slot.lookup k
+
+abbrev Slots α := alloc.vec.Vec (AList α)
+
+abbrev Slots.lookup (s : Slots α) (k : Usize) := slots_s_lookup s.val k
+
+abbrev Slots.al_v (s : Slots α) := (s.val.map AList.v).flatten
+
+def lookup (hm : HashMap α) (k : Usize) : Option α :=
+ slots_s_lookup hm.slots.val k
+
+@[simp]
+abbrev len_s (hm : HashMap α) : Int := hm.al_v.len
+
+instance : Membership Usize (HashMap α) where
+ mem k hm := hm.lookup k ≠ none
+
+/- Activate the ↑ notation -/
+attribute [coe] HashMap.v
+
+abbrev inv_load (hm : HashMap α) : Prop :=
+ let capacity := hm.slots.val.len
+ -- TODO: let (dividend, divisor) := hm.max_load_factor introduces field notation .2, etc.
+ let dividend := hm.max_load_factor.1
+ let divisor := hm.max_load_factor.2
+ 0 < dividend.val ∧ dividend < divisor ∧
+ capacity * dividend >= divisor ∧
+ hm.max_load = (capacity * dividend) / divisor
+
+@[simp]
+def inv_base (hm : HashMap α) : Prop :=
-- [num_entries] correctly tracks the number of entries
hm.num_entries.val = hm.al_v.len ∧
-- Slots invariant
slots_t_inv hm.slots ∧
-- The capacity must be > 0 (otherwise we can't resize)
- 0 < hm.slots.length
- -- TODO: load computation
+ 0 < hm.slots.length ∧ -- TODO: normalization lemmas for comparison
+ -- Load computation
+ inv_load hm
def inv (hm : HashMap α) : Prop :=
-- Base invariant
- base_inv hm
+ inv_base hm
-- TODO: either the hashmap is not overloaded, or we can't resize it
+def frame_load (hm nhm : HashMap α) : Prop :=
+ nhm.max_load_factor = hm.max_load_factor ∧
+ nhm.max_load = hm.max_load ∧
+ nhm.saturated = hm.saturated
+
-- This rewriting lemma is problematic below
attribute [-simp] Bool.exists_bool
-- The proof below is a bit expensive, so we need to increase the maximum number
-- of heart beats
set_option maxHeartbeats 1000000
+open AList
+
+@[pspec]
+theorem allocate_slots_spec {α : Type} (slots : alloc.vec.Vec (AList α)) (n : Usize)
+ (Hslots : ∀ (i : Int), 0 ≤ i → i < slots.len → slots.val.index i = Nil)
+ (Hlen : slots.len + n.val ≤ Usize.max) :
+ ∃ slots1, allocate_slots α slots n = ok slots1 ∧
+ (∀ (i : Int), 0 ≤ i → i < slots1.len → slots1.val.index i = Nil) ∧
+ slots1.len = slots.len + n.val := by
+ rw [allocate_slots]
+ rw [allocate_slots_loop]
+ if h: 0 < n.val then
+ simp [h]
+ -- TODO: progress fails here (maximum recursion depth reached)
+ -- progress as ⟨ slots1 .. ⟩
+ have ⟨ slots1, hEq, _ ⟩ := alloc.vec.Vec.push_spec slots Nil (by scalar_tac)
+ simp [hEq]; clear hEq
+ progress as ⟨ n1 ⟩
+ have Hslots1Nil :
+ ∀ (i : ℤ), 0 ≤ i → i < ↑(alloc.vec.Vec.len (AList α) slots1) → slots1.val.index i = Nil := by
+ intro i h0 h1
+ simp [*]
+ if hi : i < slots.val.len then
+ simp [*]
+ else
+ simp_all
+ have : i - slots.val.len = 0 := by scalar_tac
+ simp [*]
+ have Hslots1Len : alloc.vec.Vec.len (AList α) slots1 + n1.val ≤ Usize.max := by
+ simp_all
+ -- TODO: progress fails here (maximum recursion depth reached)
+ -- This probably comes from the fact that allocate_slots is reducible and applied an infinite number
+ -- of times
+ -- progress as ⟨ slots2 .. ⟩
+ -- TODO: bug here as well
+ stop
+ have ⟨ slots2, hEq, _, _ ⟩ := allocate_slots_spec slots1 n1 (by assumption) (by assumption)
+ stop
+ rw [allocate_slots] at hEq; rw [hEq]; clear hEq
+ simp
+ constructor
+ . intro i h0 h1
+ simp_all
+ . simp_all
+ else
+ simp [h]
+ simp_all
+ scalar_tac
+
+theorem forall_nil_imp_flatten_len_zero (slots : List (List α))
+ (Hnil : ∀ i, 0 ≤ i → i < slots.len → slots.index i = []) :
+ slots.flatten = [] := by
+ induction slots <;> simp_all
+ have Hhead := Hnil 0 (by simp) (by scalar_tac)
+ simp_all; clear Hhead
+ rename _ → _ => Hind
+ apply Hind
+ intros i h0 h1
+ have := Hnil (i + 1) (by scalar_tac) (by scalar_tac)
+ have : 0 < i + 1 := by scalar_tac
+ simp_all
+
+@[pspec]
+theorem new_with_capacity_spec
+ (capacity : Usize) (max_load_dividend : Usize) (max_load_divisor : Usize)
+ (Hcapa : 0 < capacity.val)
+ (Hfactor : 0 < max_load_dividend.val ∧ max_load_dividend.val < max_load_divisor.val ∧
+ capacity.val * max_load_dividend.val ≤ Usize.max ∧
+ capacity.val * max_load_dividend.val ≥ max_load_divisor)
+ (Hdivid : 0 < max_load_divisor.val) :
+ ∃ hm, new_with_capacity α capacity max_load_dividend max_load_divisor = ok hm ∧
+ hm.inv ∧ hm.len_s = 0 ∧ ∀ k, hm.lookup k = none := by
+ rw [new_with_capacity]
+ progress as ⟨ slots, Hnil .. ⟩
+ . intros; simp [alloc.vec.Vec.new] at *; scalar_tac
+ . simp [alloc.vec.Vec.new]; scalar_tac
+ . progress as ⟨ i1 .. ⟩
+ progress as ⟨ i2 .. ⟩
+ simp [inv, inv_load]
+ have : (Slots.al_v slots).len = 0 := by
+ have := forall_nil_imp_flatten_len_zero (slots.val.map AList.v)
+ (by intro i h0 h1; simp_all)
+ simp_all
+ have : 0 < slots.val.len := by simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
+ have : slots_t_inv slots := by
+ simp [slots_t_inv, slot_t_inv]
+ intro i h0 h1
+ simp_all
+ split_conjs
+ . simp_all [al_v, Slots.al_v, v]
+ . assumption
+ . scalar_tac
+ . simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
+ . simp_all
+ . simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
+ . simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
+ . simp_all [al_v, Slots.al_v, v]
+ . simp [lookup]
+ intro k
+ have : 0 ≤ k.val % slots.val.len := by apply Int.emod_nonneg; scalar_tac
+ have : k.val % slots.val.len < slots.val.len := by apply Int.emod_lt_of_pos; scalar_tac
+ simp [*]
+
+@[pspec]
+theorem new_spec (α : Type) :
+ ∃ hm, new α = ok hm ∧
+ hm.inv ∧ hm.len_s = 0 ∧ ∀ k, hm.lookup k = none := by
+ rw [new]
+ progress as ⟨ hm ⟩
+ simp_all
theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
@@ -141,21 +308,19 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (
exists true -- TODO: why do we need to do this?
simp [insert_in_list]
rw [insert_in_list_loop]
- simp (config := {contextual := true})
- [AList.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
+ simp (config := {contextual := true}) [AList.v]
| Cons k v tl0 =>
if h: k = key then
rw [insert_in_list]
rw [insert_in_list_loop]
simp [h]
- exists false; simp -- TODO: why do we need to do this?
+ exists false; simp only [true_and, exists_eq_left', List.lookup', ↓reduceIte, AList.v_cons] -- TODO: why do we need to do this?
split_conjs
. intros; simp [*]
- . simp [AList.v, slot_s_inv_hash] at *
- simp [*]
- . simp [*, distinct_keys] at *
- apply hdk
- . tauto
+ . simp_all [slot_s_inv_hash]
+ . simp at hinv; tauto
+ . simp_all [slot_s_inv_hash]
+ . simp_all
else
rw [insert_in_list]
rw [insert_in_list_loop]
@@ -199,18 +364,6 @@ theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0:
exists b
exists l1
-@[simp]
-def slots_t_lookup (s : List (AList α)) (k : Usize) : Option α :=
- let i := hash_mod_key k s.len
- let slot := s.index i
- slot.lookup k
-
-def lookup (hm : HashMap α) (k : Usize) : Option α :=
- slots_t_lookup hm.slots.val k
-
-@[simp]
-abbrev len_s (hm : HashMap α) : Int := hm.al_v.len
-
-- Remark: α and β must live in the same universe, otherwise the
-- bind doesn't work
theorem if_update_eq
@@ -235,6 +388,7 @@ set_option pp.coercions false -- do not print coercions with ↑ (this doesn't p
-- of heart beats
set_option maxHeartbeats 2000000
+@[pspec]
theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value : α)
(hinv : hm.inv) (hnsat : hm.lookup key = none → hm.len_s < Usize.max) :
∃ nhm, hm.insert_no_resize α key value = ok nhm ∧
@@ -271,7 +425,7 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
simp [slot_t_inv, hhm] at h
simp [h, hhm, h_leq]
have hd : distinct_keys l.v := by
- simp [inv, slots_t_inv, slot_t_inv] at hinv
+ simp [inv, slots_t_inv, slot_t_inv, slot_s_inv] at hinv
have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
simp [h, h_leq]
progress as ⟨ inserted, l0, _, _, _, _, hlen .. ⟩
@@ -300,7 +454,12 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
-- TODO: update progress to automate that
-- TODO: later I don't want to inline nhm - we need to control simp: deactivate
-- zeta reduction? For now I have to do this peculiar manipulation
- have ⟨ nhm, nhm_eq ⟩ := @mk_opaque (HashMap α) { num_entries := i0, max_load_factor := hm.max_load_factor, max_load := hm.max_load, slots := v }
+ have ⟨ nhm, nhm_eq ⟩ := @mk_opaque (HashMap α) {
+ num_entries := i0,
+ max_load_factor := hm.max_load_factor,
+ max_load := hm.max_load,
+ saturated := hm.saturated,
+ slots := v }
exists nhm
have hupdt : lookup nhm key = some value := by
simp [lookup, List.lookup] at *
@@ -338,14 +497,12 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
match hm.lookup key with
| none => nhm.len_s = hm.len_s + 1
| some _ => nhm.len_s = hm.len_s := by
- simp only [lookup, List.lookup, len_s, al_v, HashMap.v, slots_t_lookup] at *
+ simp only [lookup, List.lookup, len_s, al_v, HashMap.v, slots_s_lookup] at *
-- We have to do a case disjunction
- simp_all
- simp [List.update_map_eq]
+ simp_all [List.map_update_eq]
-- TODO: dependent rewrites
have _ : key.val % hm.slots.val.len < (List.map AList.v hm.slots.val).len := by
simp [*]
- simp [List.len_flatten_update_eq, *]
split <;>
rename_i heq <;>
simp [heq] at hlen <;>
@@ -366,21 +523,734 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
. simp [slots_t_inv, slot_t_inv] at *
intro i hipos _
have _ := hinv.right.left i hipos (by simp_all)
- simp [hhm, h_veq, nhm_eq] at * -- TODO: annoying, we do that because simp_all fails below
-- We need a case disjunction
- if h_ieq : i = key.val % List.len hm.slots.val then
- -- TODO: simp_all fails: "(deterministic) timeout at 'whnf'"
- -- Also, it is annoying to do this kind
- -- of rewritings by hand. We could have a different simp
- -- which safely substitutes variables when we have an
- -- equality `x = ...` and `x` doesn't appear in the rhs
- simp [h_ieq] at *
- simp [*]
- else
- simp [*]
+ cases h_ieq : i == key.val % List.len hm.slots.val <;> simp_all [slot_s_inv]
. simp [hinv, h_veq, nhm_eq]
+ . simp_all [frame_load, inv_base, inv_load]
simp_all
+theorem slot_allP_not_key_lookup (slot : AList T) (h : slot.v.allP fun (k', _) => ¬k = k') :
+ slot.lookup k = none := by
+ induction slot <;> simp_all
+
+@[pspec]
+theorem move_elements_from_list_spec
+ {T : Type} (ntable : HashMap T) (slot : AList T)
+ (hinv : ntable.inv)
+ {l i : Int} (hSlotInv : slot_t_inv l i slot)
+ (hDisjoint1 : ∀ key v, ntable.lookup key = some v → slot.lookup key = none)
+ (hDisjoint2 : ∀ key v, slot.lookup key = some v → ntable.lookup key = none)
+ (hLen : ntable.al_v.len + slot.v.len ≤ Usize.max)
+ :
+ ∃ ntable1, ntable.move_elements_from_list T slot = ok ntable1 ∧
+ ntable1.inv ∧
+ (∀ key v, ntable1.lookup key = some v → ntable.lookup key = some v ∨ slot.lookup key = some v) ∧
+ (∀ key v, ntable.lookup key = some v → ntable1.lookup key = some v) ∧
+ (∀ key v, slot.lookup key = some v → ntable1.lookup key = some v) ∧
+ ntable1.al_v.len = ntable.al_v.len + slot.v.len
+ := by
+ rw [move_elements_from_list]; rw [move_elements_from_list_loop]
+ cases slot with
+ | Nil =>
+ simp [hinv]
+ | Cons key value slot1 =>
+ simp
+ have hLookupKey : ntable.lookup key = none := by
+ by_contra
+ cases h: ntable.lookup key <;> simp_all
+ have h := hDisjoint1 _ _ h
+ simp_all
+ have : ntable.lookup key = none → ntable.len_s < Usize.max := by simp_all; scalar_tac
+ progress as ⟨ ntable1, _, hLookup11, hLookup12, hLength1 ⟩
+ simp [hLookupKey] at hLength1
+ have hTable1LookupImp : ∀ (key : Usize) (v : T), ntable1.lookup key = some v → slot1.lookup key = none := by
+ intro key' v hLookup
+ if h: key = key' then
+ simp_all [slot_t_inv]
+ apply slot_allP_not_key_lookup
+ simp_all
+ else
+ simp_all
+ cases h: ntable.lookup key' <;> simp_all
+ have := hDisjoint1 _ _ h
+ simp_all
+ have hSlot1LookupImp : ∀ (key : Usize) (v : T), slot1.lookup key = some v → ntable1.lookup key = none := by
+ intro key' v hLookup
+ if h: key' = key then
+ by_contra
+ rename _ => hNtable1NotNone
+ cases h: ntable1.lookup key' <;> simp [h] at hNtable1NotNone
+ have := hTable1LookupImp _ _ h
+ simp_all
+ else
+ have := hLookup12 key' h
+ have := hDisjoint2 key' v
+ simp_all
+ have : ntable1.al_v.len + slot1.v.len ≤ Usize.max := by simp_all; scalar_tac
+ have : slot_t_inv l i slot1 := by
+ simp [slot_t_inv] at hSlotInv
+ simp [slot_t_inv, hSlotInv]
+ -- TODO: progress leads to: slot_t_inv i i slot1
+ -- progress as ⟨ ntable2 ⟩
+
+ have ⟨ ntable2, hEq, hInv2, hLookup21, hLookup22, hLookup23, hLen1 ⟩ :=
+ move_elements_from_list_spec ntable1 slot1 (by assumption) (by assumption)
+ hTable1LookupImp hSlot1LookupImp (by assumption)
+ simp [hEq]; clear hEq
+ -- The conclusion
+ -- TODO: use aesop here
+ split_conjs
+ . simp [*]
+ . intro key' v hLookup
+ have := hLookup21 key' v
+ if h: key = key' then
+ have := hLookup22 key' v
+ have := hLookup23 key' v
+ have := hDisjoint1 key' v
+ have := hDisjoint2 key' v
+ have := hTable1LookupImp key' v
+ have := hSlot1LookupImp key' v
+ simp_all [Slots.lookup]
+ else have := hLookup12 key'; simp_all
+ . intro key' v hLookup1
+ if h: key' = key then
+ simp_all
+ else
+ have := hLookup12 key' h
+ have := hLookup22 key' v
+ simp_all
+ . intro key' v hLookup1
+ if h: key' = key then
+ have := hLookup22 key' v
+ simp_all
+ else
+ have := hLookup23 key' v
+ simp_all
+ . scalar_tac
+
+theorem slots_forall_nil_imp_lookup_none (slots : Slots T) (hLen : slots.val.len ≠ 0)
+ (hEmpty : ∀ j, 0 ≤ j → j < slots.val.len → slots.val.index j = AList.Nil) :
+ ∀ key, slots.lookup key = none := by
+ intro key
+ simp [Slots.lookup]
+ have : 0 ≤ key.val % slots.val.len := by
+ exact Int.emod_nonneg key.val hLen -- TODO: automate that
+ have : key.val % slots.val.len < slots.val.len := by
+ apply Int.emod_lt_of_pos
+ scalar_tac
+ have := hEmpty (key.val % slots.val.len) (by assumption) (by assumption)
+ simp [*]
+
+theorem slots_index_len_le_flatten_len (slots : List (AList α)) (i : Int) (h : 0 ≤ i ∧ i < slots.len) :
+ (slots.index i).len ≤ (List.map AList.v slots).flatten.len := by
+ match slots with
+ | [] =>
+ simp at *; scalar_tac
+ | slot :: slots' =>
+ simp at *
+ if hi : i = 0 then
+ simp_all; scalar_tac
+ else
+ have := slots_index_len_le_flatten_len slots' (i - 1) (by scalar_tac)
+ simp [*]
+ scalar_tac
+
+/- If we successfully lookup a key from a slot, the hash of the key modulo the number of slots must
+ be equal to the slot index.
+ TODO: remove?
+ -/
+theorem slots_inv_lookup_imp_eq (slots : Slots α) (hInv : slots_t_inv slots)
+ (i : Int) (hi : 0 ≤ i ∧ i < slots.val.len) (key : Usize) :
+ (slots.val.index i).lookup key ≠ none → i = key.val % slots.val.len := by
+ suffices hSlot : ∀ (slot : List (Usize × α)),
+ slot_s_inv slots.val.len i slot →
+ slot.lookup' key ≠ none →
+ i = key.val % slots.val.len
+ from by
+ rw [slots_t_inv, slots_s_inv] at hInv
+ replace hInv := hInv i hi.left hi.right
+ simp [slot_t_inv] at hInv
+ exact hSlot _ hInv
+ intro slot
+ induction slot <;> simp_all
+ intros; simp_all
+ split at * <;> simp_all
+
+-- TODO: remove?
+theorem slots_update_lookup_equiv (slots : Slots α) (hInv : slots_t_inv slots)
+ (i : Int) (hi : 0 ≤ i ∧ i < slots.val.len) (key : Usize) :
+ let slot := slots.val.index i
+ slot.lookup key ≠ none ∨ slots_s_lookup (slots.val.update i .Nil) key ≠ none ↔
+ slots.lookup key ≠ none := by
+ -- We need the following lemma to derive a contradiction
+ have := slots_inv_lookup_imp_eq slots hInv i hi key
+ cases hi : (key.val % slots.val.len) == i <;>
+ simp_all [Slots.lookup]
+
+/-theorem slots_update_lookup_imp
+ (slots slots1 : Slots α) (slot : AList α) (hInv : slots_t_inv slots) (i : Int) (hi : 0 ≤ i ∧ i < slots.val.len)
+ (hSlotsEq : slots.val = slots.val.update i slot) :
+ ∀ key v, slots1.lookup key = some v → slots.lookup key = some v ∨ slot.lookup key = some v-/
+
+theorem move_slots_updated_table_lookup_imp
+ (ntable ntable1 ntable2 : HashMap α) (slots slots1 : Slots α) (slot : AList α)
+ (hi : 0 ≤ i ∧ i < slots.val.len)
+ (hSlotsInv : slots_t_inv slots)
+ (hSlotEq : slot = slots.val.index i)
+ (hSlotsEq : slots1.val = slots.val.update i .Nil)
+ (hTableLookup : ∀ (key : Usize) (v : α), ntable1.lookup key = some v →
+ ntable.lookup key = some v ∨ slot.lookup key = some v)
+ (hTable1Lookup : ∀ (key : Usize) (v : α), ntable2.lookup key = some v →
+ ntable1.lookup key = some v ∨ Slots.lookup slots1 key = some v)
+ :
+ ∀ key v, ntable2.lookup key = some v → ntable.lookup key = some v ∨ slots.lookup key = some v := by
+ intro key v hLookup
+ replace hTableLookup := hTableLookup key v
+ replace hTable1Lookup := hTable1Lookup key v hLookup
+ cases hTable1Lookup with
+ | inl hTable1Lookup =>
+ replace hTableLookup := hTableLookup hTable1Lookup
+ cases hTableLookup <;> try simp [*]
+ right
+ have := slots_inv_lookup_imp_eq slots hSlotsInv i hi key (by simp_all)
+ simp_all [Slots.lookup]
+ | inr hTable1Lookup =>
+ right
+ -- The key can't be for the slot we replaced
+ if heq : key.val % slots.val.len = i then
+ simp_all [Slots.lookup]
+ else
+ simp_all [Slots.lookup]
+
+theorem move_one_slot_lookup_equiv {α : Type} (ntable ntable1 ntable2 : HashMap α)
+ (slot : AList α)
+ (slots slots1 : Slots α)
+ (i : Int) (h1 : i < slots.len)
+ (hSlotEq : slot = slots.val.index i)
+ (hSlots1Eq : slots1.val = slots.val.update i .Nil)
+ (hLookup1 : ∀ (key : Usize) (v : α), ntable.lookup key = some v → ntable1.lookup key = some v)
+ (hLookup2 : ∀ (key : Usize) (v : α), slot.lookup key = some v → ntable1.lookup key = some v)
+ (hLookup3 : ∀ (key : Usize) (v : α), ntable1.lookup key = some v → ntable2.lookup key = some v)
+ (hLookup4 : ∀ (key : Usize) (v : α), slots1.lookup key = some v → ntable2.lookup key = some v) :
+ (∀ key v, slots.lookup key = some v → ntable2.lookup key = some v) ∧
+ (∀ key v, ntable.lookup key = some v → ntable2.lookup key = some v) := by
+ constructor <;> intro key v hLookup
+ . if hi: key.val % slots.val.len = i then
+ -- We lookup in slot
+ have := hLookup2 key v
+ simp_all [Slots.lookup]
+ have := hLookup3 key v
+ simp_all
+ else
+ -- We lookup in slots
+ have := hLookup4 key v
+ simp_all [Slots.lookup]
+ . have := hLookup1 key v
+ have := hLookup3 key v
+ simp_all
+
+theorem slots_lookup_none_imp_slot_lookup_none
+ (slots : Slots α) (hInv : slots_t_inv slots) (i : Int) (hi : 0 ≤ i ∧ i < slots.val.len) :
+ ∀ (key : Usize), slots.lookup key = none → (slots.val.index i).lookup key = none := by
+ intro key hLookup
+ if heq : i = key.val % slots.val.len then
+ simp_all [Slots.lookup]
+ else
+ have := slots_inv_lookup_imp_eq slots hInv i (by scalar_tac) key
+ by_contra
+ simp_all
+
+theorem slot_lookup_not_none_imp_slots_lookup_not_none
+ (slots : Slots α) (hInv : slots_t_inv slots) (i : Int) (hi : 0 ≤ i ∧ i < slots.val.len) :
+ ∀ (key : Usize), (slots.val.index i).lookup key ≠ none → slots.lookup key ≠ none := by
+ intro key hLookup hNone
+ have := slots_lookup_none_imp_slot_lookup_none slots hInv i hi key hNone
+ apply hLookup this
+
+theorem slots_forall_nil_imp_al_v_nil (slots : Slots α)
+ (hEmpty : ∀ i, 0 ≤ i → i < slots.val.len → slots.val.index i = AList.Nil) :
+ slots.al_v = [] := by
+ suffices h :
+ ∀ (slots : List (AList α)),
+ (∀ (i : ℤ), 0 ≤ i → i < slots.len → slots.index i = Nil) →
+ (slots.map AList.v).flatten = [] from by
+ replace h := h slots.val (by intro i h0 h1; exact hEmpty i h0 h1)
+ simp_all
+ clear slots hEmpty
+ intro slots hEmpty
+ induction slots <;> simp_all
+ have hHead := hEmpty 0 (by simp) (by scalar_tac)
+ simp at hHead
+ simp [hHead]
+ rename (_ → _) => ih
+ apply ih; intro i h0 h1
+ replace hEmpty := hEmpty (i + 1) (by omega) (by omega)
+ -- TODO: simp at hEmpty
+ have : 0 < i + 1 := by omega
+ simp_all
+
+theorem move_elements_loop_spec
+ (n : Nat) -- We need this, otherwise we can't prove termination (the termination_by clauses can be expensive)
+ {α : Type} (ntable : HashMap α) (slots : Slots α)
+ (i : Usize)
+ (hn : n = slots.val.len - i.val) -- Condition for termination
+ (hi : i ≤ alloc.vec.Vec.len (AList α) slots)
+ (hinv : ntable.inv)
+ (hSlotsNonZero : slots.val.len ≠ 0)
+ (hSlotsInv : slots_t_inv slots)
+ (hEmpty : ∀ j, 0 ≤ j → j < i.val → slots.val.index j = AList.Nil)
+ (hDisjoint1 : ∀ key v, ntable.lookup key = some v → slots.lookup key = none)
+ (hDisjoint2 : ∀ key v, slots.lookup key = some v → ntable.lookup key = none)
+ (hLen : ntable.al_v.len + slots.al_v.len ≤ Usize.max)
+ :
+ ∃ ntable1 slots1, ntable.move_elements_loop α slots i = ok (ntable1, slots1) ∧
+ ntable1.inv ∧
+ ntable1.al_v.len = ntable.al_v.len + slots.al_v.len ∧
+ (∀ key v, ntable1.lookup key = some v → ntable.lookup key = some v ∨ slots.lookup key = some v) ∧
+ (∀ key v, slots.lookup key = some v → ntable1.lookup key = some v) ∧
+ (∀ key v, ntable.lookup key = some v → ntable1.lookup key = some v) ∧
+ (∀ (j : Int), 0 ≤ j → j < slots1.len → slots1.val.index j = AList.Nil)
+ := by
+ rw [move_elements_loop]
+ simp
+ if hi: i.val < slots.val.len then
+ -- Proof of termination: eliminate the case: n = 0
+ cases n; scalar_tac
+ rename ℕ => n
+ -- Continue the proof
+ have hIneq : 0 ≤ i.val ∧ i.val < slots.val.len := by scalar_tac
+ simp [hi]
+ progress as ⟨ slot, index_back, hSlotEq, hIndexBack ⟩
+ rw [hIndexBack]; clear hIndexBack
+ have hInvSlot : slot_t_inv slots.val.len i.val slot := by
+ simp [slots_t_inv] at hSlotsInv
+ simp [*]
+ have ntableLookupImpSlot :
+ ∀ (key : Usize) (v : α), ntable.lookup key = some v → slot.lookup key = none := by
+ intro key v hLookup
+ by_contra
+ have : i.val = key.val % slots.val.len := by
+ apply slots_inv_lookup_imp_eq slots hSlotsInv i.val (by scalar_tac)
+ simp_all
+ cases h: slot.lookup key <;> simp_all
+ have := hDisjoint2 _ _ h
+ simp_all
+ have slotLookupImpNtable :
+ ∀ (key : Usize) (v : α), slot.lookup key = some v → ntable.lookup key = none := by
+ intro key v hLookup
+ by_contra
+ cases h : ntable.lookup key <;> simp_all
+ have := ntableLookupImpSlot _ _ h
+ simp_all
+
+ have : ntable.al_v.len + slot.v.len ≤ Usize.max := by
+ have := slots_index_len_le_flatten_len slots.val i.val (by scalar_tac)
+ simp_all [Slots.al_v]; scalar_tac
+ progress as ⟨ ntable1, _, hDisjointNtable1, hLookup11, hLookup12, hLen1 ⟩ -- TODO: decompose post-condition by default
+ progress as ⟨ i' .. ⟩
+ progress as ⟨ slots1, hSlots1Eq .. ⟩
+ have : i' ≤ alloc.vec.Vec.len (AList α) slots1 := by simp_all [alloc.vec.Vec.len]; scalar_tac
+ have : slots_t_inv slots1 := by
+ simp [slots_t_inv] at *
+ intro j h0 h1
+ cases h: j == i.val <;> simp_all
+
+ have ntable1LookupImpSlots1 : ∀ (key : Usize) (v : α), ntable1.lookup key = some v → Slots.lookup slots1 key = none := by
+ intro key v hLookup
+ cases hDisjointNtable1 _ _ hLookup with
+ | inl h =>
+ have := ntableLookupImpSlot _ _ h
+ have := hDisjoint1 _ _ h
+ cases heq : i == key.val % slots.val.len <;> simp_all [Slots.lookup]
+ | inr h =>
+ --have h1 := hLookup12 _ _ h
+ have heq : i = key.val % slots.val.len := by
+ exact slots_inv_lookup_imp_eq slots hSlotsInv i.val hIneq key (by simp_all [Slots.lookup])
+ simp_all [Slots.lookup]
+
+ have : ∀ (key : Usize) (v : α), Slots.lookup slots1 key = some v → ntable1.lookup key = none := by
+ intro key v hLookup
+ by_contra h
+ cases h : ntable1.lookup key <;> simp_all
+ have := ntable1LookupImpSlots1 _ _ h
+ simp_all
+
+ have : ∀ (j : ℤ), OfNat.ofNat 0 ≤ j → j < i'.val → slots1.val.index j = AList.Nil := by
+ intro j h0 h1
+ if h : j = i.val then
+ simp_all
+ else
+ have := hEmpty j h0 (by scalar_tac)
+ simp_all
+
+ have : ntable1.al_v.len + (Slots.al_v slots1).len ≤ Usize.max := by
+ have : i.val < (List.map AList.v slots.val).len := by simp; scalar_tac
+ simp_all [Slots.al_v, List.len_flatten_update_eq, List.map_update_eq]
+
+ have : n = slots1.val.len - i'.val := by simp_all; scalar_tac
+
+ progress as ⟨ ntable2, slots2, _, _, hLookup2Rev, hLookup21, hLookup22, hIndexNil ⟩
+
+ simp [and_assoc]
+ have : ∀ (j : ℤ), OfNat.ofNat 0 ≤ j → j < slots2.val.len → slots2.val.index j = AList.Nil := by
+ intro j h0 h1
+ apply hIndexNil j h0 h1
+ have : ntable2.al_v.len = ntable.al_v.len + slots.al_v.len := by simp_all [Slots.al_v]
+ have : ∀ key v, ntable2.lookup key = some v →
+ ntable.lookup key = some v ∨ slots.lookup key = some v := by
+ intro key v hLookup
+ apply move_slots_updated_table_lookup_imp ntable ntable1 ntable2 slots slots1 slot hIneq <;>
+ try assumption
+ have hLookupPreserve :
+ (∀ key v, slots.lookup key = some v → ntable2.lookup key = some v) ∧
+ (∀ key v, ntable.lookup key = some v → ntable2.lookup key = some v) := by
+ exact move_one_slot_lookup_equiv ntable ntable1 ntable2 slot slots slots1 i.val
+ (by assumption) (by assumption) (by assumption)
+ (by assumption) (by assumption) (by assumption) (by assumption)
+ simp_all [alloc.vec.Vec.len, or_assoc]
+ apply hLookupPreserve
+ else
+ simp [hi, and_assoc, *]
+ simp_all
+ have hi : i = alloc.vec.Vec.len (AList α) slots := by scalar_tac
+ have hEmpty : ∀ j, 0 ≤ j → j < slots.val.len → slots.val.index j = AList.Nil := by
+ simp [hi] at hEmpty
+ exact hEmpty
+ have hNil : slots.al_v = [] := slots_forall_nil_imp_al_v_nil slots hEmpty
+ have hLenNonZero : slots.val.len ≠ 0 := by simp [*]
+ have hLookupEmpty := slots_forall_nil_imp_lookup_none slots hLenNonZero hEmpty
+ simp [hNil, hLookupEmpty]
+ apply hEmpty
+
+@[pspec]
+theorem move_elements_spec
+ {α : Type} (ntable : HashMap α) (slots : Slots α)
+ (hinv : ntable.inv)
+ (hslotsNempty : 0 < slots.val.len)
+ (hSlotsInv : slots_t_inv slots)
+ -- The initial table is empty
+ (hEmpty : ∀ key, ntable.lookup key = none)
+ (hTableLen : ntable.al_v.len = 0)
+ (hSlotsLen : slots.al_v.len ≤ Usize.max)
+ :
+ ∃ ntable1 slots1, ntable.move_elements α slots = ok (ntable1, slots1) ∧
+ ntable1.inv ∧
+ ntable1.al_v.len = ntable.al_v.len + slots.al_v.len ∧
+ (∀ key v, ntable1.lookup key = some v ↔ slots.lookup key = some v)
+ := by
+ rw [move_elements]
+ let n := (slots.val.len - 0).toNat
+ have hn : n = slots.val.len - 0 := by
+ -- TODO: scalar_tac should succeed here
+ scalar_tac_preprocess
+ simp [n] at *
+ norm_cast at *
+ have := @Int.le_toNat n (slots.val.len - OfNat.ofNat 0) (by simp; scalar_tac)
+ simp_all
+ have ⟨ ntable1, slots1, hEq, _, _, ntable1Lookup, slotsLookup, _, _ ⟩ :=
+ move_elements_loop_spec (slots.val.len - 0).toNat ntable slots 0#usize hn (by scalar_tac) hinv
+ (by scalar_tac)
+ hSlotsInv
+ (by intro j h0 h1; scalar_tac)
+ (by simp [*])
+ (by simp [*])
+ (by scalar_tac)
+ simp [hEq]; clear hEq
+ split_conjs <;> try assumption
+ intro key v
+ have := ntable1Lookup key v
+ have := slotsLookup key v
+ constructor <;> simp_all
+
+@[pspec]
+theorem try_resize_spec {α : Type} (hm : HashMap α) (hInv : hm.inv):
+ ∃ hm', hm.try_resize α = ok hm' ∧
+ (∀ key, hm'.lookup key = hm.lookup key) ∧
+ hm'.al_v.len = hm.al_v.len := by
+ rw [try_resize]
+ simp
+ progress as ⟨ n1 ⟩ -- TODO: simplify (Usize.ofInt (OfNat.ofNat 2) try_resize.proof_1).val
+ have : hm.2.1.val ≠ 0 := by
+ simp [inv, inv_load] at hInv
+ -- TODO: why does hm.max_load_factor appears as hm.2??
+ -- Can we deactivate field notations?
+ omega
+ progress as ⟨ n2 ⟩
+ if hSmaller : hm.slots.val.len ≤ n2.val then
+ simp [hSmaller]
+ have : (alloc.vec.Vec.len (AList α) hm.slots).val * 2 ≤ Usize.max := by
+ simp [alloc.vec.Vec.len, inv, inv_load] at *
+ -- TODO: this should be automated
+ have hIneq1 : n1.val ≤ Usize.max / 2 := by simp [*]
+ simp [Int.le_ediv_iff_mul_le] at hIneq1
+ -- TODO: this should be automated
+ have hIneq2 : n2.val ≤ n1.val / hm.2.1.val := by simp [*]
+ rw [Int.le_ediv_iff_mul_le] at hIneq2 <;> try simp [*]
+ have : n2.val * 1 ≤ n2.val * hm.max_load_factor.1.val := by
+ apply Int.mul_le_mul <;> scalar_tac
+ scalar_tac
+ progress as ⟨ newLength ⟩
+ have : 0 < newLength.val := by
+ simp_all [inv, inv_load]
+ progress as ⟨ ntable1 .. ⟩ -- TODO: introduce nice notation to take care of preconditions
+ . -- Pre 1
+ simp_all [inv, inv_load]
+ split_conjs at hInv
+ --
+ apply Int.mul_le_of_le_ediv at hSmaller <;> try simp [*]
+ apply Int.mul_le_of_le_ediv at hSmaller <;> try simp
+ --
+ have : (hm.slots.val.len * hm.2.1.val) * 1 ≤ (hm.slots.val.len * hm.2.1.val) * 2 := by
+ apply Int.mul_le_mul <;> (try simp [*]); scalar_tac
+ --
+ ring_nf at *
+ simp [*]
+ unfold max_load max_load_factor at *
+ omega
+ . -- Pre 2
+ simp_all [inv, inv_load]
+ unfold max_load_factor at * -- TODO: this is really annoying
+ omega
+ . -- End of the proof
+ have : slots_t_inv hm.slots := by simp_all [inv] -- TODO
+ have : (Slots.al_v hm.slots).len ≤ Usize.max := by simp_all [inv, al_v, v, Slots.al_v]; scalar_tac
+ progress as ⟨ ntable2, slots1, _, _, hLookup .. ⟩ -- TODO: assumption is not powerful enough
+ simp_all [lookup, al_v, v, alloc.vec.Vec.len]
+ intro key
+ replace hLookup := hLookup key
+ cases h1: (ntable2.slots.val.index (key.val % ntable2.slots.val.len)).v.lookup' key <;>
+ cases h2: (hm.slots.val.index (key.val % hm.slots.val.len)).v.lookup' key <;>
+ simp_all [Slots.lookup]
+ else
+ simp [hSmaller]
+ tauto
+
+@[pspec]
+theorem insert_spec {α} (hm : HashMap α) (key : Usize) (value : α)
+ (hInv : hm.inv)
+ (hNotSat : hm.lookup key = none → hm.len_s < Usize.max) :
+ ∃ hm1, insert α hm key value = ok hm1 ∧
+ --
+ hm1.lookup key = value ∧
+ (∀ key', key' ≠ key → hm1.lookup key' = hm.lookup key') ∧
+ --
+ match hm.lookup key with
+ | none => hm1.len_s = hm.len_s + 1
+ | some _ => hm1.len_s = hm.len_s
+ := by
+ rw [insert]
+ progress as ⟨ hm1 .. ⟩
+ simp [len]
+ split
+ . split
+ . simp [*]
+ intros; tauto
+ . progress as ⟨ hm2 .. ⟩
+ simp [*]
+ intros; tauto
+ . simp [*]; tauto
+
+@[pspec]
+theorem get_in_list_spec {α} (key : Usize) (slot : AList α) (hLookup : slot.lookup key ≠ none) :
+ ∃ v, get_in_list α key slot = ok v ∧ slot.lookup key = some v := by
+ induction slot <;>
+ rw [get_in_list, get_in_list_loop] <;>
+ simp_all [AList.lookup]
+ split <;> simp_all
+
+@[pspec]
+theorem get_spec {α} (hm : HashMap α) (key : Usize) (hInv : hm.inv) (hLookup : hm.lookup key ≠ none) :
+ ∃ v, get α hm key = ok v ∧ hm.lookup key = some v := by
+ rw [get]
+ simp [hash_key, alloc.vec.Vec.len]
+ have : 0 < hm.slots.val.len := by simp_all [inv]
+ progress as ⟨ hash_mod .. ⟩ -- TODO: decompose post by default
+ simp at *
+ have : 0 ≤ hash_mod.val := by -- TODO: automate
+ simp [*]
+ apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
+ have : hash_mod < hm.slots.val.len := by -- TODO: automate
+ simp [*]
+ apply Int.emod_lt_of_pos; scalar_tac
+ progress as ⟨ slot ⟩
+ progress as ⟨ v .. ⟩ <;> simp_all [lookup]
+
+@[pspec]
+theorem get_mut_in_list_spec {α} (key : Usize) (slot : AList α)
+ {l i : Int}
+ (hInv : slot_t_inv l i slot)
+ (hLookup : slot.lookup key ≠ none) :
+ ∃ v back, get_mut_in_list α slot key = ok (v, back) ∧
+ slot.lookup key = some v ∧
+ ∀ v', ∃ slot', back v' = ok slot' ∧
+ slot_t_inv l i slot' ∧
+ slot'.lookup key = v' ∧
+ (∀ key', key' ≠ key → slot'.lookup key' = slot.lookup key') ∧
+ -- We need this strong post-condition for the recursive case
+ (∀ key', slot.v.allP (fun x => key' ≠ x.1) → slot'.v.allP (fun x => key' ≠ x.1))
+ := by
+ induction slot <;>
+ rw [get_mut_in_list, get_mut_in_list_loop] <;>
+ simp_all [AList.lookup]
+ split
+ . -- Non-recursive case
+ simp_all [and_assoc, slot_t_inv]
+ . -- Recursive case
+ -- TODO: progress doesn't instantiate l correctly
+ rename _ → _ → _ => ih
+ rename AList α => tl
+ replace ih := ih (by simp_all [slot_t_inv]) (by simp_all)
+ -- progress also fails here
+ -- TODO: progress? notation to have some feedback
+ have ⟨ v, back, hEq, _, hBack ⟩ := ih; clear ih
+ simp [hEq]; clear hEq
+ simp [and_assoc, *]
+ -- Proving the post-condition about back
+ intro v
+ progress as ⟨ slot', _, _, _, hForAll ⟩; clear hBack
+ simp [and_assoc, *]
+ constructor
+ . simp_all [slot_t_inv, slot_s_inv, slot_s_inv_hash]
+ . simp_all
+
+@[pspec]
+theorem get_mut_spec {α} (hm : HashMap α) (key : Usize) (hInv : hm.inv) (hLookup : hm.lookup key ≠ none) :
+ ∃ v back, get_mut α hm key = ok (v, back) ∧
+ hm.lookup key = some v ∧
+ ∀ v', ∃ hm', back v' = ok hm' ∧
+ hm'.lookup key = v' ∧
+ ∀ key', key' ≠ key → hm'.lookup key' = hm.lookup key'
+ := by
+ rw [get_mut]
+ simp [hash_key, alloc.vec.Vec.len]
+ have : 0 < hm.slots.val.len := by simp_all [inv]
+ progress as ⟨ hash_mod .. ⟩ -- TODO: decompose post by default
+ simp at *
+ have : 0 ≤ hash_mod.val := by -- TODO: automate
+ simp [*]
+ apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
+ have : hash_mod < hm.slots.val.len := by -- TODO: automate
+ simp [*]
+ apply Int.emod_lt_of_pos; scalar_tac
+ progress as ⟨ slot, index_back .. ⟩
+ have : slot_t_inv hm.slots.val.len hash_mod slot := by
+ simp_all [inv, slots_t_inv]
+ have : slot.lookup key ≠ none := by
+ simp_all [lookup]
+ progress as ⟨ v, back .. ⟩
+ simp [and_assoc, lookup, *]
+ constructor
+ . simp_all
+ . -- Backward function
+ intro v'
+ progress as ⟨ slot' .. ⟩
+ progress as ⟨ slots' ⟩
+ simp_all
+ -- Last postcondition
+ intro key' hNotEq
+ have : 0 ≤ key'.val % hm.slots.val.len := by -- TODO: automate
+ apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
+ have : key'.val % hm.slots.val.len < hm.slots.val.len := by -- TODO: automate
+ apply Int.emod_lt_of_pos; scalar_tac
+ -- We need to do a case disjunction
+ cases h: (key.val % hm.slots.val.len == key'.val % hm.slots.val.len) <;>
+ simp_all
+
+@[pspec]
+theorem remove_from_list_spec {α} (key : Usize) (slot : AList α) {l i} (hInv : slot_t_inv l i slot) :
+ ∃ v slot', remove_from_list α key slot = ok (v, slot') ∧
+ slot.lookup key = v ∧
+ slot'.lookup key = none ∧
+ (∀ key', key' ≠ key → slot'.lookup key' = slot.lookup key') ∧
+ match v with
+ | none => slot'.v.len = slot.v.len
+ | some _ => slot'.v.len = slot.v.len - 1 := by
+ rw [remove_from_list, remove_from_list_loop]
+ match hEq : slot with
+ | .Nil =>
+ simp [and_assoc]
+ | .Cons k v0 tl =>
+ simp
+ if hKey : k = key then
+ simp [hKey, and_assoc]
+ simp_all [slot_t_inv, slot_s_inv]
+ apply slot_allP_not_key_lookup
+ simp [*]
+ else
+ simp [hKey]
+ -- TODO: progress doesn't instantiate l properly
+ have hInv' : slot_t_inv l i tl := by simp_all [slot_t_inv]
+ have ⟨ v1, tl1, hRemove, _, _, hLookupTl1, _ ⟩ := remove_from_list_spec key tl hInv'
+ simp [and_assoc, *]; clear hRemove
+ constructor
+ . intro key' hNotEq1
+ simp_all
+ . cases v1 <;> simp_all
+
+theorem lookup'_not_none_imp_len_pos (l : List (Usize × α)) (key : Usize) (hLookup : l.lookup' key ≠ none) :
+ 0 < l.len := by
+ induction l <;> simp_all
+ scalar_tac
+
+theorem lookup_not_none_imp_len_s_pos (hm : HashMap α) (key : Usize) (hLookup : hm.lookup key ≠ none)
+ (hNotEmpty : 0 < hm.slots.val.len) :
+ 0 < hm.len_s := by
+ have : 0 ≤ key.val % hm.slots.val.len := by -- TODO: automate
+ apply Int.emod_nonneg; scalar_tac
+ have : key.val % hm.slots.val.len < hm.slots.val.len := by -- TODO: automate
+ apply Int.emod_lt_of_pos; scalar_tac
+ have := List.len_index_le_len_flatten hm.v (key.val % hm.slots.val.len)
+ have := lookup'_not_none_imp_len_pos (hm.slots.val.index (key.val % hm.slots.val.len)).v key
+ simp_all [lookup, len_s, al_v, v]
+ scalar_tac
+
+@[pspec]
+theorem remove_spec {α} (hm : HashMap α) (key : Usize) (hInv : hm.inv) :
+ ∃ v hm', remove α hm key = ok (v, hm') ∧
+ hm.lookup key = v ∧
+ hm'.lookup key = none ∧
+ (∀ key', key' ≠ key → hm'.lookup key' = hm.lookup key') ∧
+ match v with
+ | none => hm'.len_s = hm.len_s
+ | some _ => hm'.len_s = hm.len_s - 1 := by
+ rw [remove]
+ simp [hash_key, alloc.vec.Vec.len]
+ have : 0 < hm.slots.val.len := by simp_all [inv]
+ progress as ⟨ hash_mod .. ⟩ -- TODO: decompose post by default
+ simp at *
+ have : 0 ≤ hash_mod.val := by -- TODO: automate
+ simp [*]
+ apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
+ have : hash_mod < hm.slots.val.len := by -- TODO: automate
+ simp [*]
+ apply Int.emod_lt_of_pos; scalar_tac
+ progress as ⟨ slot, index_back .. ⟩
+ have : slot_t_inv hm.slots.val.len hash_mod slot := by simp_all [inv, slots_t_inv]
+ progress as ⟨ vOpt, slot' .. ⟩
+ match hOpt : vOpt with
+ | none =>
+ simp [*]
+ progress as ⟨ slot'' ⟩
+ simp [and_assoc, lookup, *]
+ simp_all [al_v, v]
+ intro key' hNotEq
+ -- We need to make a case disjunction
+ cases h: (key.val % hm.slots.val.len) == (key'.val % hm.slots.val.len) <;>
+ simp_all
+ | some v =>
+ simp [*]
+ have : 0 < hm.num_entries.val := by
+ have := lookup_not_none_imp_len_s_pos hm key (by simp_all [lookup]) (by simp_all [inv])
+ simp_all [inv]
+ progress as ⟨ newSize .. ⟩
+ progress as ⟨ slots1 .. ⟩
+ simp_all [and_assoc, lookup, al_v, HashMap.v]
+ constructor
+ . intro key' hNotEq
+ cases h: (key.val % hm.slots.val.len) == (key'.val % hm.slots.val.len) <;>
+ simp_all
+ . scalar_tac
+
end HashMap
end hashmap
diff --git a/tests/lean/Hashmap/Types.lean b/tests/lean/Hashmap/Types.lean
index 6f5d99a5..90d352c1 100644
--- a/tests/lean/Hashmap/Types.lean
+++ b/tests/lean/Hashmap/Types.lean
@@ -21,6 +21,7 @@ structure HashMap (T : Type) where
num_entries : Usize
max_load_factor : (Usize × Usize)
max_load : Usize
+ saturated : Bool
slots : alloc.vec.Vec (AList T)
end hashmap
diff --git a/tests/src/hashmap.rs b/tests/src/hashmap.rs
index 12a95d0f..6d7702c1 100644
--- a/tests/src/hashmap.rs
+++ b/tests/src/hashmap.rs
@@ -51,6 +51,8 @@ pub struct HashMap<T> {
/// The max load factor applied to the current table length:
/// gives the threshold at which to resize the table.
max_load: usize,
+ /// [true] if we can't increase the size anymore.
+ saturated: bool,
/// The table itself
slots: Vec<AList<T>>,
}
@@ -79,6 +81,7 @@ impl<T> HashMap<T> {
num_entries: 0,
max_load_factor: (max_load_dividend, max_load_divisor),
max_load: (capacity * max_load_dividend) / max_load_divisor,
+ saturated: false,
slots,
}
}
@@ -140,8 +143,8 @@ impl<T> HashMap<T> {
pub fn insert(&mut self, key: Key, value: T) {
// Insert
self.insert_no_resize(key, value);
- // Resize if necessary
- if self.len() > self.max_load {
+ // Resize if necessary and if we're not saturated
+ if self.len() > self.max_load && !self.saturated {
self.try_resize()
}
}
@@ -149,13 +152,7 @@ impl<T> HashMap<T> {
/// The resize function, called if we need to resize the table after
/// an insertion.
fn try_resize(&mut self) {
- // Check that we can resize: we need to check that there are no overflows.
- // Note that we are conservative about the usize::MAX.
- // Also note that `as usize` is a trait, but we apply it to a constant
- // here, which gets compiled by the MIR interpreter (so we don't see
- // the conversion, actually).
- // Rk.: this is a hit heavy...
- let max_usize = u32::MAX as usize;
+ let max_usize = usize::MAX;
let capacity = self.slots.len();
// Checking that there won't be overflows by using the fact that, if m > 0:
// n * m <= p <==> n <= p / m
@@ -169,17 +166,20 @@ impl<T> HashMap<T> {
);
// Move the elements to the new table
- HashMap::move_elements(&mut ntable, &mut self.slots, 0);
+ HashMap::move_elements(&mut ntable, &mut self.slots);
// Replace the current table with the new table
self.slots = ntable.slots;
self.max_load = ntable.max_load;
+ } else {
+ self.saturated = true;
}
}
/// Auxiliary function called by [try_resize] to move all the elements
/// from the table to a new table
- fn move_elements<'a>(ntable: &'a mut HashMap<T>, slots: &'a mut Vec<AList<T>>, mut i: usize) {
+ fn move_elements<'a>(ntable: &'a mut HashMap<T>, slots: &'a mut Vec<AList<T>>) {
+ let mut i = 0;
while i < slots.len() {
// Move the elements out of the slot i
let ls = std::mem::replace(&mut slots[i], AList::Nil);