summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSon HO2024-02-11 15:28:23 +0100
committerGitHub2024-02-11 15:28:23 +0100
commit305f916c602457b0a1fa8ce5569c6c0bf26d6f8e (patch)
treeab7c8d7dd3aa62e16e2cf84467da3d5fbb156711
parenteb8bddcbd120f666f74023de9a23c48e1a55833d (diff)
parentdd41ce4d968222824d36a295194a0de003d7a822 (diff)
Merge pull request #73 from AeneasVerif/son/demo
Add some demo files
-rw-r--r--Makefile9
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean396
-rw-r--r--flake.lock42
-rw-r--r--tests/coq/demo/Demo.v167
-rw-r--r--tests/coq/demo/Makefile23
-rw-r--r--tests/coq/demo/Primitives.v899
-rw-r--r--tests/coq/demo/_CoqProject7
-rw-r--r--tests/fstar-split/demo/Demo.fst187
-rw-r--r--tests/fstar-split/demo/Makefile49
-rw-r--r--tests/fstar-split/demo/Primitives.fst884
-rw-r--r--tests/fstar/demo/Demo.fst138
-rw-r--r--tests/fstar/demo/Makefile49
-rw-r--r--tests/fstar/demo/Primitives.fst848
-rw-r--r--tests/lean/Demo.lean1
-rw-r--r--tests/lean/Demo/Demo.lean148
-rw-r--r--tests/lean/Demo/Properties.lean68
-rw-r--r--tests/lean/lakefile.lean1
17 files changed, 3696 insertions, 220 deletions
diff --git a/Makefile b/Makefile
index 45f191cc..26392c11 100644
--- a/Makefile
+++ b/Makefile
@@ -93,7 +93,7 @@ tests: test-no_nested_borrows test-paper \
testp-polonius_list testp-betree_main \
ctest-testp-betree_main \
test-loops \
- test-arrays test-traits test-bitwise
+ test-arrays test-traits test-bitwise test-demo
# Verify the F* files generated by the translation
.PHONY: verify
@@ -148,6 +148,13 @@ tcoq-loops: OPTIONS += -use-fuel
tlean-loops: SUBDIR :=
thol4-loops: SUBDIR := misc-loops
+test-demo: OPTIONS +=
+test-demo: SUBDIR := demo
+tfstar-demo: OPTIONS += -use-fuel
+tcoq-demo: OPTIONS += -use-fuel
+tlean-demo: SUBDIR := Demo
+thol4-demo: OPTIONS +=
+
# TODO: reactivate -test-trans-units
test-hashmap: OPTIONS += -split-files
test-hashmap: SUBDIR := hashmap
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index b11bd2a1..285bc7fb 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -271,6 +271,9 @@ structure Scalar (ty : ScalarTy) where
hmax : val ≤ Scalar.max ty
deriving Repr
+instance (ty : ScalarTy) : CoeOut (Scalar ty) Int where
+ coe := λ v => v.val
+
theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty ->
Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty
@@ -535,9 +538,9 @@ instance {ty} : HAnd (Scalar ty) (Scalar ty) (Scalar ty) where
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.add_spec {ty} {x y : Scalar ty}
- (hmin : Scalar.min ty ≤ x.val + y.val)
- (hmax : x.val + y.val ≤ Scalar.max ty) :
- (∃ z, x + y = ret z ∧ z.val = x.val + y.val) := by
+ (hmin : Scalar.min ty ≤ ↑x + y.val)
+ (hmax : ↑x + ↑y ≤ Scalar.max ty) :
+ (∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y) := by
-- Applying the unfoldings only on the left
conv => congr; ext; lhs; unfold HAdd.hAdd instHAddScalarResult; simp [add, tryMk]
split
@@ -545,75 +548,75 @@ theorem Scalar.add_spec {ty} {x y : Scalar ty}
. tauto
theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
- (hmax : x.val + y.val ≤ Scalar.max ty) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
- have hmin : Scalar.min ty ≤ x.val + y.val := by
+ (hmax : ↑x + ↑y ≤ Scalar.max ty) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
+ have hmin : Scalar.min ty ≤ ↑x + ↑y := by
have hx := x.hmin
have hy := y.hmin
cases ty <;> simp [min, ScalarTy.isSigned] at * <;> linarith
apply add_spec <;> assumption
/- Fine-grained theorems -/
-@[pspec] theorem Usize.add_spec {x y : Usize} (hmax : x.val + y.val ≤ Usize.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+@[pspec] theorem Usize.add_spec {x y : Usize} (hmax : ↑x + ↑y ≤ Usize.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
-@[pspec] theorem U8.add_spec {x y : U8} (hmax : x.val + y.val ≤ U8.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+@[pspec] theorem U8.add_spec {x y : U8} (hmax : ↑x + ↑y ≤ U8.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
-@[pspec] theorem U16.add_spec {x y : U16} (hmax : x.val + y.val ≤ U16.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+@[pspec] theorem U16.add_spec {x y : U16} (hmax : ↑x + ↑y ≤ U16.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
-@[pspec] theorem U32.add_spec {x y : U32} (hmax : x.val + y.val ≤ U32.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+@[pspec] theorem U32.add_spec {x y : U32} (hmax : ↑x + ↑y ≤ U32.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
-@[pspec] theorem U64.add_spec {x y : U64} (hmax : x.val + y.val ≤ U64.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+@[pspec] theorem U64.add_spec {x y : U64} (hmax : ↑x + ↑y ≤ U64.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
-@[pspec] theorem U128.add_spec {x y : U128} (hmax : x.val + y.val ≤ U128.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+@[pspec] theorem U128.add_spec {x y : U128} (hmax : ↑x + ↑y ≤ U128.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y := by
apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *]
@[pspec] theorem Isize.add_spec {x y : Isize}
- (hmin : Isize.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ Isize.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val :=
+ (hmin : Isize.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ Isize.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I8.add_spec {x y : I8}
- (hmin : I8.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I8.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val :=
+ (hmin : I8.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I8.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I16.add_spec {x y : I16}
- (hmin : I16.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I16.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val :=
+ (hmin : I16.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I16.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I32.add_spec {x y : I32}
- (hmin : I32.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I32.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val :=
+ (hmin : I32.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I32.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I64.add_spec {x y : I64}
- (hmin : I64.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I64.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val :=
+ (hmin : I64.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I64.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
@[pspec] theorem I128.add_spec {x y : I128}
- (hmin : I128.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ I128.max) :
- ∃ z, x + y = ret z ∧ z.val = x.val + y.val :=
+ (hmin : I128.min ≤ ↑x + ↑y) (hmax : ↑x + ↑y ≤ I128.max) :
+ ∃ z, x + y = ret z ∧ (↑z : Int) = ↑x + ↑y :=
Scalar.add_spec hmin hmax
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.sub_spec {ty} {x y : Scalar ty}
- (hmin : Scalar.min ty ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ Scalar.max ty) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+ (hmin : Scalar.min ty ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ Scalar.max ty) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
conv => congr; ext; lhs; simp [HSub.hSub, sub, tryMk, Sub.sub]
split
. simp [pure]
@@ -621,9 +624,9 @@ theorem Scalar.sub_spec {ty} {x y : Scalar ty}
. tauto
theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
- {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
- have : x.val - y.val ≤ Scalar.max ty := by
+ {x y : Scalar ty} (hmin : Scalar.min ty ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
+ have : ↑x - ↑y ≤ Scalar.max ty := by
have hx := x.hmin
have hxm := x.hmax
have hy := y.hmin
@@ -632,65 +635,65 @@ theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned)
apply sub_spec <;> assumption
/- Fine-grained theorems -/
-@[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+@[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
-@[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+@[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
-@[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+@[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
-@[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+@[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
-@[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+@[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
-@[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ x.val - y.val) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by
+@[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ ↑x - ↑y) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y := by
apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned]
-@[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ Isize.max) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val :=
+@[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ Isize.max) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-@[pspec] theorem I8.sub_spec {x y : I8} (hmin : I8.min ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ I8.max) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val :=
+@[pspec] theorem I8.sub_spec {x y : I8} (hmin : I8.min ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ I8.max) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-@[pspec] theorem I16.sub_spec {x y : I16} (hmin : I16.min ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ I16.max) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val :=
+@[pspec] theorem I16.sub_spec {x y : I16} (hmin : I16.min ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ I16.max) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-@[pspec] theorem I32.sub_spec {x y : I32} (hmin : I32.min ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ I32.max) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val :=
+@[pspec] theorem I32.sub_spec {x y : I32} (hmin : I32.min ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ I32.max) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-@[pspec] theorem I64.sub_spec {x y : I64} (hmin : I64.min ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ I64.max) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val :=
+@[pspec] theorem I64.sub_spec {x y : I64} (hmin : I64.min ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ I64.max) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-@[pspec] theorem I128.sub_spec {x y : I128} (hmin : I128.min ≤ x.val - y.val)
- (hmax : x.val - y.val ≤ I128.max) :
- ∃ z, x - y = ret z ∧ z.val = x.val - y.val :=
+@[pspec] theorem I128.sub_spec {x y : I128} (hmin : I128.min ≤ ↑x - ↑y)
+ (hmax : ↑x - ↑y ≤ I128.max) :
+ ∃ z, x - y = ret z ∧ (↑z : Int) = ↑x - ↑y :=
Scalar.sub_spec hmin hmax
-- Generic theorem - shouldn't be used much
theorem Scalar.mul_spec {ty} {x y : Scalar ty}
- (hmin : Scalar.min ty ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ Scalar.max ty) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+ (hmin : Scalar.min ty ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ Scalar.max ty) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
conv => congr; ext; lhs; simp [HMul.hMul]
simp [mul, tryMk]
split
@@ -699,91 +702,91 @@ theorem Scalar.mul_spec {ty} {x y : Scalar ty}
. tauto
theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty}
- (hmax : x.val * y.val ≤ Scalar.max ty) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
- have : Scalar.min ty ≤ x.val * y.val := by
+ (hmax : ↑x * ↑y ≤ Scalar.max ty) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
+ have : Scalar.min ty ≤ ↑x * ↑y := by
have hx := x.hmin
have hy := y.hmin
cases ty <;> simp [ScalarTy.isSigned] at * <;> apply mul_nonneg hx hy
apply mul_spec <;> assumption
/- Fine-grained theorems -/
-@[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : x.val * y.val ≤ Usize.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+@[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : ↑x * ↑y ≤ Usize.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
-@[pspec] theorem U8.mul_spec {x y : U8} (hmax : x.val * y.val ≤ U8.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+@[pspec] theorem U8.mul_spec {x y : U8} (hmax : ↑x * ↑y ≤ U8.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
-@[pspec] theorem U16.mul_spec {x y : U16} (hmax : x.val * y.val ≤ U16.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+@[pspec] theorem U16.mul_spec {x y : U16} (hmax : ↑x * ↑y ≤ U16.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
-@[pspec] theorem U32.mul_spec {x y : U32} (hmax : x.val * y.val ≤ U32.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+@[pspec] theorem U32.mul_spec {x y : U32} (hmax : ↑x * ↑y ≤ U32.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
-@[pspec] theorem U64.mul_spec {x y : U64} (hmax : x.val * y.val ≤ U64.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+@[pspec] theorem U64.mul_spec {x y : U64} (hmax : ↑x * ↑y ≤ U64.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
-@[pspec] theorem U128.mul_spec {x y : U128} (hmax : x.val * y.val ≤ U128.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by
+@[pspec] theorem U128.mul_spec {x y : U128} (hmax : ↑x * ↑y ≤ U128.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y := by
apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned]
-@[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ Isize.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val :=
+@[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ Isize.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-@[pspec] theorem I8.mul_spec {x y : I8} (hmin : I8.min ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ I8.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val :=
+@[pspec] theorem I8.mul_spec {x y : I8} (hmin : I8.min ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ I8.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-@[pspec] theorem I16.mul_spec {x y : I16} (hmin : I16.min ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ I16.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val :=
+@[pspec] theorem I16.mul_spec {x y : I16} (hmin : I16.min ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ I16.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-@[pspec] theorem I32.mul_spec {x y : I32} (hmin : I32.min ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ I32.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val :=
+@[pspec] theorem I32.mul_spec {x y : I32} (hmin : I32.min ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ I32.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-@[pspec] theorem I64.mul_spec {x y : I64} (hmin : I64.min ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ I64.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val :=
+@[pspec] theorem I64.mul_spec {x y : I64} (hmin : I64.min ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ I64.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-@[pspec] theorem I128.mul_spec {x y : I128} (hmin : I128.min ≤ x.val * y.val)
- (hmax : x.val * y.val ≤ I128.max) :
- ∃ z, x * y = ret z ∧ z.val = x.val * y.val :=
+@[pspec] theorem I128.mul_spec {x y : I128} (hmin : I128.min ≤ ↑x * ↑y)
+ (hmax : ↑x * ↑y ≤ I128.max) :
+ ∃ z, x * y = ret z ∧ (↑z : Int) = ↑x * ↑y :=
Scalar.mul_spec hmin hmax
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.div_spec {ty} {x y : Scalar ty}
- (hnz : y.val ≠ 0)
- (hmin : Scalar.min ty ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ Scalar.max ty) :
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val := by
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : Scalar.min ty ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ Scalar.max ty) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y := by
simp [HDiv.hDiv, div, Div.div]
simp [tryMk, *]
simp [pure]
rfl
theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
- (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+ (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
simp [h] at hx hy
- have hmin : 0 ≤ x.val / y.val := Int.ediv_nonneg hx hy
- have hmax : x.val / y.val ≤ Scalar.max ty := by
- have := Int.ediv_le_self y.val hx
+ have hmin : 0 ≤ ↑x / ↑y := Int.ediv_nonneg hx hy
+ have hmax : ↑x / ↑y ≤ Scalar.max ty := by
+ have := Int.ediv_le_self ↑y hx
have := x.hmax
linarith
have hs := @div_spec ty x y hnz
@@ -791,158 +794,158 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S
apply hs
/- Fine-grained theorems -/
-@[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+@[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+@[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+@[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+@[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+@[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) :
- ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by
+@[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x / y = ret z ∧ (↑z : Int) = ↑x / ↑y := by
apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem Isize.div_spec (x : Isize) {y : Isize}
- (hnz : y.val ≠ 0)
- (hmin : Isize.min ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ Isize.max):
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : Isize.min ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ Isize.max):
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I8.div_spec (x : I8) {y : I8}
- (hnz : y.val ≠ 0)
- (hmin : I8.min ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ I8.max):
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I8.min ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ I8.max):
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I16.div_spec (x : I16) {y : I16}
- (hnz : y.val ≠ 0)
- (hmin : I16.min ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ I16.max):
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I16.min ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ I16.max):
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I32.div_spec (x : I32) {y : I32}
- (hnz : y.val ≠ 0)
- (hmin : I32.min ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ I32.max):
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I32.min ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ I32.max):
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I64.div_spec (x : I64) {y : I64}
- (hnz : y.val ≠ 0)
- (hmin : I64.min ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ I64.max):
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I64.min ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ I64.max):
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
@[pspec] theorem I128.div_spec (x : I128) {y : I128}
- (hnz : y.val ≠ 0)
- (hmin : I128.min ≤ scalar_div x.val y.val)
- (hmax : scalar_div x.val y.val ≤ I128.max):
- ∃ z, x / y = ret z ∧ z.val = scalar_div x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I128.min ≤ scalar_div ↑x ↑y)
+ (hmax : scalar_div ↑x ↑y ≤ I128.max):
+ ∃ z, x / y = ret z ∧ (↑z : Int) = scalar_div ↑x ↑y :=
Scalar.div_spec hnz hmin hmax
-- Generic theorem - shouldn't be used much
@[pspec]
theorem Scalar.rem_spec {ty} {x y : Scalar ty}
- (hnz : y.val ≠ 0)
- (hmin : Scalar.min ty ≤ scalar_rem x.val y.val)
- (hmax : scalar_rem x.val y.val ≤ Scalar.max ty) :
- ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val := by
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : Scalar.min ty ≤ scalar_rem ↑x ↑y)
+ (hmax : scalar_rem ↑x ↑y ≤ Scalar.max ty) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y := by
simp [HMod.hMod, rem]
simp [tryMk, *]
simp [pure]
rfl
theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty}
- (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+ (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at *
have hx := x.hmin
have hy := y.hmin
simp [h] at hx hy
- have hmin : 0 ≤ x.val % y.val := Int.emod_nonneg x.val hnz
- have hmax : x.val % y.val ≤ Scalar.max ty := by
- have h : 0 < y.val := by int_tac
- have h := Int.emod_lt_of_pos x.val h
+ have hmin : (0 : Int) ≤ x % y := Int.emod_nonneg ↑x hnz
+ have hmax : ↑x % ↑y ≤ Scalar.max ty := by
+ have h : (0 : Int) < y := by int_tac
+ have h := Int.emod_lt_of_pos ↑x h
have := y.hmax
linarith
have hs := @rem_spec ty x y hnz
simp [*] at hs
simp [*]
-@[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+@[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+@[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+@[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+@[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+@[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
-@[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) :
- ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by
+@[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : ↑y ≠ (0 : Int)) :
+ ∃ z, x % y = ret z ∧ (↑z : Int) = ↑x % ↑y := by
apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *]
@[pspec] theorem I8.rem_spec (x : I8) {y : I8}
- (hnz : y.val ≠ 0)
- (hmin : I8.min ≤ scalar_rem x.val y.val)
- (hmax : scalar_rem x.val y.val ≤ I8.max):
- ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I8.min ≤ scalar_rem ↑x ↑y)
+ (hmax : scalar_rem ↑x ↑y ≤ I8.max):
+ ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I16.rem_spec (x : I16) {y : I16}
- (hnz : y.val ≠ 0)
- (hmin : I16.min ≤ scalar_rem x.val y.val)
- (hmax : scalar_rem x.val y.val ≤ I16.max):
- ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I16.min ≤ scalar_rem ↑x ↑y)
+ (hmax : scalar_rem ↑x ↑y ≤ I16.max):
+ ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I32.rem_spec (x : I32) {y : I32}
- (hnz : y.val ≠ 0)
- (hmin : I32.min ≤ scalar_rem x.val y.val)
- (hmax : scalar_rem x.val y.val ≤ I32.max):
- ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I32.min ≤ scalar_rem ↑x ↑y)
+ (hmax : scalar_rem ↑x ↑y ≤ I32.max):
+ ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I64.rem_spec (x : I64) {y : I64}
- (hnz : y.val ≠ 0)
- (hmin : I64.min ≤ scalar_rem x.val y.val)
- (hmax : scalar_rem x.val y.val ≤ I64.max):
- ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I64.min ≤ scalar_rem ↑x ↑y)
+ (hmax : scalar_rem ↑x ↑y ≤ I64.max):
+ ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
@[pspec] theorem I128.rem_spec (x : I128) {y : I128}
- (hnz : y.val ≠ 0)
- (hmin : I128.min ≤ scalar_rem x.val y.val)
- (hmax : scalar_rem x.val y.val ≤ I128.max):
- ∃ z, x % y = ret z ∧ z.val = scalar_rem x.val y.val :=
+ (hnz : ↑y ≠ (0 : Int))
+ (hmin : I128.min ≤ scalar_rem ↑x ↑y)
+ (hmax : scalar_rem ↑x ↑y ≤ I128.max):
+ ∃ z, x % y = ret z ∧ (↑z : Int) = scalar_rem ↑x ↑y :=
Scalar.rem_spec hnz hmin hmax
-- ofIntCore
@@ -1039,24 +1042,24 @@ instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-- Not marking this one with @[simp] on purpose
theorem Scalar.eq_equiv {ty : ScalarTy} (x y : Scalar ty) :
- x = y ↔ x.val = y.val := by
+ x = y ↔ (↑x : Int) = ↑y := by
cases x; cases y; simp_all
-- This is sometimes useful when rewriting the goal with the local assumptions
@[simp] theorem Scalar.eq_imp {ty : ScalarTy} (x y : Scalar ty) :
- x = y → x.val = y.val := (eq_equiv x y).mp
+ x = y → (↑x : Int) = ↑y := (eq_equiv x y).mp
theorem Scalar.lt_equiv {ty : ScalarTy} (x y : Scalar ty) :
- x < y ↔ x.val < y.val := by simp [LT.lt]
+ x < y ↔ (↑x : Int) < ↑y := by simp [LT.lt]
@[simp] theorem Scalar.lt_imp {ty : ScalarTy} (x y : Scalar ty) :
- x < y → x.val < y.val := (lt_equiv x y).mp
+ x < y → (↑x : Int) < ↑y := (lt_equiv x y).mp
theorem Scalar.le_equiv {ty : ScalarTy} (x y : Scalar ty) :
- x ≤ y ↔ x.val ≤ y.val := by simp [LE.le]
+ x ≤ y ↔ (↑x : Int) ≤ ↑y := by simp [LE.le]
@[simp] theorem Scalar.le_imp {ty : ScalarTy} (x y : Scalar ty) :
- x ≤ y → x.val ≤ y.val := (le_equiv x y).mp
+ x ≤ y → (↑x : Int) ≤ ↑y := (le_equiv x y).mp
instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
@@ -1076,9 +1079,6 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
| isTrue h => isTrue (Scalar.eq_of_val_eq h)
| isFalse h => isFalse (Scalar.ne_of_val_ne h)
-instance (ty : ScalarTy) : CoeOut (Scalar ty) Int where
- coe := λ v => v.val
-
@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by
intro i j; cases i; cases j; simp
diff --git a/flake.lock b/flake.lock
index f600cf10..b5b7bc3c 100644
--- a/flake.lock
+++ b/flake.lock
@@ -8,11 +8,11 @@
"rust-overlay": "rust-overlay"
},
"locked": {
- "lastModified": 1706913319,
- "narHash": "sha256-ardrxwhlhzWKpc96Pz2UoJTDOFnk3IpjFxoSRyd/cew=",
+ "lastModified": 1707489322,
+ "narHash": "sha256-fnb4vyW3BxC4+ue4aLxIM0a5WmNdgdpdkSvwir8Zens=",
"owner": "aeneasverif",
"repo": "charon",
- "rev": "9aedfc390e7418346afdbb66e1d3c14134be6ddb",
+ "rev": "89cecf5d1074fae7e8007be7f6cdf2f38e9782b1",
"type": "github"
},
"original": {
@@ -131,11 +131,11 @@
"nixpkgs": "nixpkgs_2"
},
"locked": {
- "lastModified": 1706647851,
- "narHash": "sha256-tJgVMcCOEqdrgNUHjHgdc3+Spf3vri5Y3Y6noG1mZgo=",
+ "lastModified": 1707271955,
+ "narHash": "sha256-OgPXUBx+sVwiENg4tH3GkdAvX+E67djqE/bTfjqPygU=",
"owner": "fstarlang",
"repo": "fstar",
- "rev": "a48e0aa9935c2a22ea540f9f2734c5f847d96361",
+ "rev": "531185028c4add6ff183ca119ca8415cc2b375db",
"type": "github"
},
"original": {
@@ -164,11 +164,11 @@
]
},
"locked": {
- "lastModified": 1706637944,
- "narHash": "sha256-Cf3kGqFEsOy5Y+2shxN7BC6ADcmWdqs6XZhPdT8sCZI=",
+ "lastModified": 1707239346,
+ "narHash": "sha256-fCLBOwHv2RqWcDzCqpVzIS1Au5CnfvEqbKHyNUzDEwk=",
"owner": "hacl-star",
"repo": "hacl-star",
- "rev": "513e026e7096639ee99f0c546c99e2f72f86fd6a",
+ "rev": "9666f11923844fcdbca6a7af4b4b94fa47b5bb88",
"type": "github"
},
"original": {
@@ -194,11 +194,11 @@
]
},
"locked": {
- "lastModified": 1706663512,
- "narHash": "sha256-37cicQ3mF8PsZe6Lh48o8n+n6vH53Dn7Vap0HOrIBqc=",
+ "lastModified": 1707354605,
+ "narHash": "sha256-ogIf8OwaCkZCFx3Niayd/zh2LTjNJrRDA6XuY11EqBg=",
"owner": "hacl-star",
"repo": "hacl-nix",
- "rev": "94fafa6c4fdc4769abbf5f24f170e429e11484bd",
+ "rev": "e46ef04ad5120b35bc99eca3c77e039f8ca30a6f",
"type": "github"
},
"original": {
@@ -223,11 +223,11 @@
]
},
"locked": {
- "lastModified": 1705542599,
- "narHash": "sha256-wNtuRRvMzRzBE2xKreNSM9uJecDHFUXyug1+O9t+eyQ=",
+ "lastModified": 1707198961,
+ "narHash": "sha256-HnOVG+lqfxTJnV+Dmi/UsHfHguWg7WgcC+k5qbBfYxw=",
"owner": "fstarlang",
"repo": "karamel",
- "rev": "fdf6a10aa22f9b1b3effffeeb270229447b5bb9b",
+ "rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"type": "github"
},
"original": {
@@ -265,11 +265,11 @@
"nixpkgs": "nixpkgs_4"
},
"locked": {
- "lastModified": 1706830172,
- "narHash": "sha256-QpLi87ZpYxjvyiCaOpE9bTvLEbOShYtpcSa72s/VO4M=",
+ "lastModified": 1707482772,
+ "narHash": "sha256-sewRgw1MhmoFJO33rDOyz5KH0CGWEnQmwns4uRkmF0U=",
"owner": "leanprover",
"repo": "lean4",
- "rev": "43bbedca46f890e2d2b29d92f71b1e7b76aa0e93",
+ "rev": "488bfe2128a1c5ff0e96c45cf6a382655dc7c703",
"type": "github"
},
"original": {
@@ -318,11 +318,11 @@
"nixpkgs": "nixpkgs_7"
},
"locked": {
- "lastModified": 1706830172,
- "narHash": "sha256-QpLi87ZpYxjvyiCaOpE9bTvLEbOShYtpcSa72s/VO4M=",
+ "lastModified": 1707482772,
+ "narHash": "sha256-sewRgw1MhmoFJO33rDOyz5KH0CGWEnQmwns4uRkmF0U=",
"owner": "leanprover",
"repo": "lean4",
- "rev": "43bbedca46f890e2d2b29d92f71b1e7b76aa0e93",
+ "rev": "488bfe2128a1c5ff0e96c45cf6a382655dc7c703",
"type": "github"
},
"original": {
diff --git a/tests/coq/demo/Demo.v b/tests/coq/demo/Demo.v
new file mode 100644
index 00000000..1abe7c5c
--- /dev/null
+++ b/tests/coq/demo/Demo.v
@@ -0,0 +1,167 @@
+(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
+(** [demo] *)
+Require Import Primitives.
+Import Primitives.
+Require Import Coq.ZArith.ZArith.
+Require Import List.
+Import ListNotations.
+Local Open Scope Primitives_scope.
+Module Demo.
+
+(** [demo::choose]:
+ Source: 'src/demo.rs', lines 5:0-5:70 *)
+Definition choose
+ (T : Type) (b : bool) (x : T) (y : T) : result (T * (T -> result (T * T))) :=
+ if b
+ then let back_'a := fun (ret : T) => Return (ret, y) in Return (x, back_'a)
+ else let back_'a := fun (ret : T) => Return (x, ret) in Return (y, back_'a)
+.
+
+(** [demo::mul2_add1]:
+ Source: 'src/demo.rs', lines 13:0-13:31 *)
+Definition mul2_add1 (x : u32) : result u32 :=
+ i <- u32_add x x; u32_add i 1%u32
+.
+
+(** [demo::use_mul2_add1]:
+ Source: 'src/demo.rs', lines 17:0-17:43 *)
+Definition use_mul2_add1 (x : u32) (y : u32) : result u32 :=
+ i <- mul2_add1 x; u32_add i y
+.
+
+(** [demo::incr]:
+ Source: 'src/demo.rs', lines 21:0-21:31 *)
+Definition incr (x : u32) : result u32 :=
+ u32_add x 1%u32.
+
+(** [demo::CList]
+ Source: 'src/demo.rs', lines 27:0-27:17 *)
+Inductive CList_t (T : Type) :=
+| CList_CCons : T -> CList_t T -> CList_t T
+| CList_CNil : CList_t T
+.
+
+Arguments CList_CCons { _ }.
+Arguments CList_CNil { _ }.
+
+(** [demo::list_nth]:
+ Source: 'src/demo.rs', lines 32:0-32:56 *)
+Fixpoint list_nth (T : Type) (n : nat) (l : CList_t T) (i : u32) : result T :=
+ match n with
+ | O => Fail_ OutOfFuel
+ | S n1 =>
+ match l with
+ | CList_CCons x tl =>
+ if i s= 0%u32
+ then Return x
+ else (i1 <- u32_sub i 1%u32; list_nth T n1 tl i1)
+ | CList_CNil => Fail_ Failure
+ end
+ end
+.
+
+(** [demo::list_nth_mut]:
+ Source: 'src/demo.rs', lines 47:0-47:68 *)
+Fixpoint list_nth_mut
+ (T : Type) (n : nat) (l : CList_t T) (i : u32) :
+ result (T * (T -> result (CList_t T)))
+ :=
+ match n with
+ | O => Fail_ OutOfFuel
+ | S n1 =>
+ match l with
+ | CList_CCons x tl =>
+ if i s= 0%u32
+ then
+ let back_'a := fun (ret : T) => Return (CList_CCons ret tl) in
+ Return (x, back_'a)
+ else (
+ i1 <- u32_sub i 1%u32;
+ p <- list_nth_mut T n1 tl i1;
+ let (t, list_nth_mut_back) := p in
+ let back_'a :=
+ fun (ret : T) =>
+ tl1 <- list_nth_mut_back ret; Return (CList_CCons x tl1) in
+ Return (t, back_'a))
+ | CList_CNil => Fail_ Failure
+ end
+ end
+.
+
+(** [demo::list_nth_mut1]: loop 0:
+ Source: 'src/demo.rs', lines 62:0-71:1 *)
+Fixpoint list_nth_mut1_loop
+ (T : Type) (n : nat) (l : CList_t T) (i : u32) :
+ result (T * (T -> result (CList_t T)))
+ :=
+ match n with
+ | O => Fail_ OutOfFuel
+ | S n1 =>
+ match l with
+ | CList_CCons x tl =>
+ if i s= 0%u32
+ then
+ let back_'a := fun (ret : T) => Return (CList_CCons ret tl) in
+ Return (x, back_'a)
+ else (
+ i1 <- u32_sub i 1%u32;
+ p <- list_nth_mut1_loop T n1 tl i1;
+ let (t, back_'a) := p in
+ let back_'a1 :=
+ fun (ret : T) => tl1 <- back_'a ret; Return (CList_CCons x tl1) in
+ Return (t, back_'a1))
+ | CList_CNil => Fail_ Failure
+ end
+ end
+.
+
+(** [demo::list_nth_mut1]:
+ Source: 'src/demo.rs', lines 62:0-62:77 *)
+Definition list_nth_mut1
+ (T : Type) (n : nat) (l : CList_t T) (i : u32) :
+ result (T * (T -> result (CList_t T)))
+ :=
+ p <- list_nth_mut1_loop T n l i; let (t, back_'a) := p in Return (t, back_'a)
+.
+
+(** [demo::i32_id]:
+ Source: 'src/demo.rs', lines 73:0-73:28 *)
+Fixpoint i32_id (n : nat) (i : i32) : result i32 :=
+ match n with
+ | O => Fail_ OutOfFuel
+ | S n1 =>
+ if i s= 0%i32
+ then Return 0%i32
+ else (i1 <- i32_sub i 1%i32; i2 <- i32_id n1 i1; i32_add i2 1%i32)
+ end
+.
+
+(** Trait declaration: [demo::Counter]
+ Source: 'src/demo.rs', lines 83:0-83:17 *)
+Record Counter_t (Self : Type) := mkCounter_t {
+ Counter_t_incr : Self -> result (usize * Self);
+}.
+
+Arguments mkCounter_t { _ }.
+Arguments Counter_t_incr { _ }.
+
+(** [demo::{usize}::incr]:
+ Source: 'src/demo.rs', lines 88:4-88:31 *)
+Definition usize_incr (self : usize) : result (usize * usize) :=
+ self1 <- usize_add self 1%usize; Return (self, self1)
+.
+
+(** Trait implementation: [demo::{usize}]
+ Source: 'src/demo.rs', lines 87:0-87:22 *)
+Definition demo_CounterUsizeInst : Counter_t usize := {|
+ Counter_t_incr := usize_incr;
+|}.
+
+(** [demo::use_counter]:
+ Source: 'src/demo.rs', lines 95:0-95:59 *)
+Definition use_counter
+ (T : Type) (counterTInst : Counter_t T) (cnt : T) : result (usize * T) :=
+ counterTInst.(Counter_t_incr) cnt
+.
+
+End Demo.
diff --git a/tests/coq/demo/Makefile b/tests/coq/demo/Makefile
new file mode 100644
index 00000000..1a5aee4a
--- /dev/null
+++ b/tests/coq/demo/Makefile
@@ -0,0 +1,23 @@
+# This file was automatically generated - modify ../Makefile.template instead
+# Makefile originally taken from coq-club
+
+%: Makefile.coq phony
+ +make -f Makefile.coq $@
+
+all: Makefile.coq
+ +make -f Makefile.coq all
+
+clean: Makefile.coq
+ +make -f Makefile.coq clean
+ rm -f Makefile.coq
+
+Makefile.coq: _CoqProject Makefile
+ coq_makefile -f _CoqProject | sed 's/$$(COQCHK) $$(COQCHKFLAGS) $$(COQLIBS)/$$(COQCHK) $$(COQCHKFLAGS) $$(subst -Q,-R,$$(COQLIBS))/' > Makefile.coq
+
+_CoqProject: ;
+
+Makefile: ;
+
+phony: ;
+
+.PHONY: all clean phony
diff --git a/tests/coq/demo/Primitives.v b/tests/coq/demo/Primitives.v
new file mode 100644
index 00000000..990e27e4
--- /dev/null
+++ b/tests/coq/demo/Primitives.v
@@ -0,0 +1,899 @@
+Require Import Lia.
+Require Coq.Strings.Ascii.
+Require Coq.Strings.String.
+Require Import Coq.Program.Equality.
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.ZArith.Znat.
+Require Import List.
+Import ListNotations.
+
+Module Primitives.
+
+ (* TODO: use more *)
+Declare Scope Primitives_scope.
+
+(*** Result *)
+
+Inductive error :=
+ | Failure
+ | OutOfFuel.
+
+Inductive result A :=
+ | Return : A -> result A
+ | Fail_ : error -> result A.
+
+Arguments Return {_} a.
+Arguments Fail_ {_}.
+
+Definition bind {A B} (m: result A) (f: A -> result B) : result B :=
+ match m with
+ | Fail_ e => Fail_ e
+ | Return x => f x
+ end.
+
+Definition return_ {A: Type} (x: A) : result A := Return x.
+Definition fail_ {A: Type} (e: error) : result A := Fail_ e.
+
+Notation "x <- c1 ; c2" := (bind c1 (fun x => c2))
+ (at level 61, c1 at next level, right associativity).
+
+(** Monadic assert *)
+Definition massert (b: bool) : result unit :=
+ if b then Return tt else Fail_ Failure.
+
+(** Normalize and unwrap a successful result (used for globals) *)
+Definition eval_result_refl {A} {x} (a: result A) (p: a = Return x) : A :=
+ match a as r return (r = Return x -> A) with
+ | Return a' => fun _ => a'
+ | Fail_ e => fun p' =>
+ False_rect _ (eq_ind (Fail_ e)
+ (fun e : result A =>
+ match e with
+ | Return _ => False
+ | Fail_ e => True
+ end)
+ I (Return x) p')
+ end p.
+
+Notation "x %global" := (eval_result_refl x eq_refl) (at level 40).
+Notation "x %return" := (eval_result_refl x eq_refl) (at level 40).
+
+(* Sanity check *)
+Check (if true then Return (1 + 2) else Fail_ Failure)%global = 3.
+
+(*** Misc *)
+
+Definition string := Coq.Strings.String.string.
+Definition char := Coq.Strings.Ascii.ascii.
+Definition char_of_byte := Coq.Strings.Ascii.ascii_of_byte.
+
+Definition core_mem_replace (a : Type) (x : a) (y : a) : a * a := (x, x) .
+
+Record mut_raw_ptr (T : Type) := { mut_raw_ptr_v : T }.
+Record const_raw_ptr (T : Type) := { const_raw_ptr_v : T }.
+
+(*** Scalars *)
+
+Definition i8_min : Z := -128%Z.
+Definition i8_max : Z := 127%Z.
+Definition i16_min : Z := -32768%Z.
+Definition i16_max : Z := 32767%Z.
+Definition i32_min : Z := -2147483648%Z.
+Definition i32_max : Z := 2147483647%Z.
+Definition i64_min : Z := -9223372036854775808%Z.
+Definition i64_max : Z := 9223372036854775807%Z.
+Definition i128_min : Z := -170141183460469231731687303715884105728%Z.
+Definition i128_max : Z := 170141183460469231731687303715884105727%Z.
+Definition u8_min : Z := 0%Z.
+Definition u8_max : Z := 255%Z.
+Definition u16_min : Z := 0%Z.
+Definition u16_max : Z := 65535%Z.
+Definition u32_min : Z := 0%Z.
+Definition u32_max : Z := 4294967295%Z.
+Definition u64_min : Z := 0%Z.
+Definition u64_max : Z := 18446744073709551615%Z.
+Definition u128_min : Z := 0%Z.
+Definition u128_max : Z := 340282366920938463463374607431768211455%Z.
+
+(** The bounds of [isize] and [usize] vary with the architecture. *)
+Axiom isize_min : Z.
+Axiom isize_max : Z.
+Definition usize_min : Z := 0%Z.
+Axiom usize_max : Z.
+
+Open Scope Z_scope.
+
+(** We provide those lemmas to reason about the bounds of [isize] and [usize] *)
+Axiom isize_min_bound : isize_min <= i32_min.
+Axiom isize_max_bound : i32_max <= isize_max.
+Axiom usize_max_bound : u32_max <= usize_max.
+
+Inductive scalar_ty :=
+ | Isize
+ | I8
+ | I16
+ | I32
+ | I64
+ | I128
+ | Usize
+ | U8
+ | U16
+ | U32
+ | U64
+ | U128
+.
+
+Definition scalar_min (ty: scalar_ty) : Z :=
+ match ty with
+ | Isize => isize_min
+ | I8 => i8_min
+ | I16 => i16_min
+ | I32 => i32_min
+ | I64 => i64_min
+ | I128 => i128_min
+ | Usize => usize_min
+ | U8 => u8_min
+ | U16 => u16_min
+ | U32 => u32_min
+ | U64 => u64_min
+ | U128 => u128_min
+end.
+
+Definition scalar_max (ty: scalar_ty) : Z :=
+ match ty with
+ | Isize => isize_max
+ | I8 => i8_max
+ | I16 => i16_max
+ | I32 => i32_max
+ | I64 => i64_max
+ | I128 => i128_max
+ | Usize => usize_max
+ | U8 => u8_max
+ | U16 => u16_max
+ | U32 => u32_max
+ | U64 => u64_max
+ | U128 => u128_max
+end.
+
+(** We use the following conservative bounds to make sure we can compute bound
+ checks in most situations *)
+Definition scalar_min_cons (ty: scalar_ty) : Z :=
+ match ty with
+ | Isize => i32_min
+ | Usize => u32_min
+ | _ => scalar_min ty
+end.
+
+Definition scalar_max_cons (ty: scalar_ty) : Z :=
+ match ty with
+ | Isize => i32_max
+ | Usize => u32_max
+ | _ => scalar_max ty
+end.
+
+Lemma scalar_min_cons_valid : forall ty, scalar_min ty <= scalar_min_cons ty .
+Proof.
+ destruct ty; unfold scalar_min_cons, scalar_min; try lia.
+ - pose isize_min_bound; lia.
+ - apply Z.le_refl.
+Qed.
+
+Lemma scalar_max_cons_valid : forall ty, scalar_max ty >= scalar_max_cons ty .
+Proof.
+ destruct ty; unfold scalar_max_cons, scalar_max; try lia.
+ - pose isize_max_bound; lia.
+ - pose usize_max_bound. lia.
+Qed.
+
+Definition scalar (ty: scalar_ty) : Type :=
+ { x: Z | scalar_min ty <= x <= scalar_max ty }.
+
+Definition to_Z {ty} (x: scalar ty) : Z := proj1_sig x.
+
+(** Bounds checks: we start by using the conservative bounds, to make sure we
+ can compute in most situations, then we use the real bounds (for [isize]
+ and [usize]). *)
+Definition scalar_ge_min (ty: scalar_ty) (x: Z) : bool :=
+ Z.leb (scalar_min_cons ty) x || Z.leb (scalar_min ty) x.
+
+Definition scalar_le_max (ty: scalar_ty) (x: Z) : bool :=
+ Z.leb x (scalar_max_cons ty) || Z.leb x (scalar_max ty).
+
+Lemma scalar_ge_min_valid (ty: scalar_ty) (x: Z) :
+ scalar_ge_min ty x = true -> scalar_min ty <= x .
+Proof.
+ unfold scalar_ge_min.
+ pose (scalar_min_cons_valid ty).
+ lia.
+Qed.
+
+Lemma scalar_le_max_valid (ty: scalar_ty) (x: Z) :
+ scalar_le_max ty x = true -> x <= scalar_max ty .
+Proof.
+ unfold scalar_le_max.
+ pose (scalar_max_cons_valid ty).
+ lia.
+Qed.
+
+Definition scalar_in_bounds (ty: scalar_ty) (x: Z) : bool :=
+ scalar_ge_min ty x && scalar_le_max ty x .
+
+Lemma scalar_in_bounds_valid (ty: scalar_ty) (x: Z) :
+ scalar_in_bounds ty x = true -> scalar_min ty <= x <= scalar_max ty .
+Proof.
+ unfold scalar_in_bounds.
+ intros H.
+ destruct (scalar_ge_min ty x) eqn:Hmin.
+ - destruct (scalar_le_max ty x) eqn:Hmax.
+ + pose (scalar_ge_min_valid ty x Hmin).
+ pose (scalar_le_max_valid ty x Hmax).
+ lia.
+ + inversion H.
+ - inversion H.
+Qed.
+
+Import Sumbool.
+
+Definition mk_scalar (ty: scalar_ty) (x: Z) : result (scalar ty) :=
+ match sumbool_of_bool (scalar_in_bounds ty x) with
+ | left H => Return (exist _ x (scalar_in_bounds_valid _ _ H))
+ | right _ => Fail_ Failure
+ end.
+
+Definition scalar_add {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (to_Z x + to_Z y).
+
+Definition scalar_sub {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (to_Z x - to_Z y).
+
+Definition scalar_mul {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (to_Z x * to_Z y).
+
+Definition scalar_div {ty} (x y: scalar ty) : result (scalar ty) :=
+ if to_Z y =? 0 then Fail_ Failure else
+ mk_scalar ty (to_Z x / to_Z y).
+
+Definition scalar_rem {ty} (x y: scalar ty) : result (scalar ty) := mk_scalar ty (Z.rem (to_Z x) (to_Z y)).
+
+Definition scalar_neg {ty} (x: scalar ty) : result (scalar ty) := mk_scalar ty (-(to_Z x)).
+
+Axiom scalar_xor : forall ty, scalar ty -> scalar ty -> scalar ty. (* TODO *)
+Axiom scalar_or : forall ty, scalar ty -> scalar ty -> scalar ty. (* TODO *)
+Axiom scalar_and : forall ty, scalar ty -> scalar ty -> scalar ty. (* TODO *)
+Axiom scalar_shl : forall ty0 ty1, scalar ty0 -> scalar ty1 -> result (scalar ty0). (* TODO *)
+Axiom scalar_shr : forall ty0 ty1, scalar ty0 -> scalar ty1 -> result (scalar ty0). (* TODO *)
+
+(** Cast an integer from a [src_ty] to a [tgt_ty] *)
+(* TODO: check the semantics of casts in Rust *)
+Definition scalar_cast (src_ty tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) :=
+ mk_scalar tgt_ty (to_Z x).
+
+(* This can't fail, but for now we make all casts faillible (easier for the translation) *)
+Definition scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) :=
+ mk_scalar tgt_ty (if x then 1 else 0).
+
+(** Comparisons *)
+Definition scalar_leb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
+ Z.leb (to_Z x) (to_Z y) .
+
+Definition scalar_ltb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
+ Z.ltb (to_Z x) (to_Z y) .
+
+Definition scalar_geb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
+ Z.geb (to_Z x) (to_Z y) .
+
+Definition scalar_gtb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
+ Z.gtb (to_Z x) (to_Z y) .
+
+Definition scalar_eqb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
+ Z.eqb (to_Z x) (to_Z y) .
+
+Definition scalar_neqb {ty : scalar_ty} (x : scalar ty) (y : scalar ty) : bool :=
+ negb (Z.eqb (to_Z x) (to_Z y)) .
+
+
+(** The scalar types *)
+Definition isize := scalar Isize.
+Definition i8 := scalar I8.
+Definition i16 := scalar I16.
+Definition i32 := scalar I32.
+Definition i64 := scalar I64.
+Definition i128 := scalar I128.
+Definition usize := scalar Usize.
+Definition u8 := scalar U8.
+Definition u16 := scalar U16.
+Definition u32 := scalar U32.
+Definition u64 := scalar U64.
+Definition u128 := scalar U128.
+
+(** Negaion *)
+Definition isize_neg := @scalar_neg Isize.
+Definition i8_neg := @scalar_neg I8.
+Definition i16_neg := @scalar_neg I16.
+Definition i32_neg := @scalar_neg I32.
+Definition i64_neg := @scalar_neg I64.
+Definition i128_neg := @scalar_neg I128.
+
+(** Division *)
+Definition isize_div := @scalar_div Isize.
+Definition i8_div := @scalar_div I8.
+Definition i16_div := @scalar_div I16.
+Definition i32_div := @scalar_div I32.
+Definition i64_div := @scalar_div I64.
+Definition i128_div := @scalar_div I128.
+Definition usize_div := @scalar_div Usize.
+Definition u8_div := @scalar_div U8.
+Definition u16_div := @scalar_div U16.
+Definition u32_div := @scalar_div U32.
+Definition u64_div := @scalar_div U64.
+Definition u128_div := @scalar_div U128.
+
+(** Remainder *)
+Definition isize_rem := @scalar_rem Isize.
+Definition i8_rem := @scalar_rem I8.
+Definition i16_rem := @scalar_rem I16.
+Definition i32_rem := @scalar_rem I32.
+Definition i64_rem := @scalar_rem I64.
+Definition i128_rem := @scalar_rem I128.
+Definition usize_rem := @scalar_rem Usize.
+Definition u8_rem := @scalar_rem U8.
+Definition u16_rem := @scalar_rem U16.
+Definition u32_rem := @scalar_rem U32.
+Definition u64_rem := @scalar_rem U64.
+Definition u128_rem := @scalar_rem U128.
+
+(** Addition *)
+Definition isize_add := @scalar_add Isize.
+Definition i8_add := @scalar_add I8.
+Definition i16_add := @scalar_add I16.
+Definition i32_add := @scalar_add I32.
+Definition i64_add := @scalar_add I64.
+Definition i128_add := @scalar_add I128.
+Definition usize_add := @scalar_add Usize.
+Definition u8_add := @scalar_add U8.
+Definition u16_add := @scalar_add U16.
+Definition u32_add := @scalar_add U32.
+Definition u64_add := @scalar_add U64.
+Definition u128_add := @scalar_add U128.
+
+(** Substraction *)
+Definition isize_sub := @scalar_sub Isize.
+Definition i8_sub := @scalar_sub I8.
+Definition i16_sub := @scalar_sub I16.
+Definition i32_sub := @scalar_sub I32.
+Definition i64_sub := @scalar_sub I64.
+Definition i128_sub := @scalar_sub I128.
+Definition usize_sub := @scalar_sub Usize.
+Definition u8_sub := @scalar_sub U8.
+Definition u16_sub := @scalar_sub U16.
+Definition u32_sub := @scalar_sub U32.
+Definition u64_sub := @scalar_sub U64.
+Definition u128_sub := @scalar_sub U128.
+
+(** Multiplication *)
+Definition isize_mul := @scalar_mul Isize.
+Definition i8_mul := @scalar_mul I8.
+Definition i16_mul := @scalar_mul I16.
+Definition i32_mul := @scalar_mul I32.
+Definition i64_mul := @scalar_mul I64.
+Definition i128_mul := @scalar_mul I128.
+Definition usize_mul := @scalar_mul Usize.
+Definition u8_mul := @scalar_mul U8.
+Definition u16_mul := @scalar_mul U16.
+Definition u32_mul := @scalar_mul U32.
+Definition u64_mul := @scalar_mul U64.
+Definition u128_mul := @scalar_mul U128.
+
+(** Xor *)
+Definition u8_xor := @scalar_xor U8.
+Definition u16_xor := @scalar_xor U16.
+Definition u32_xor := @scalar_xor U32.
+Definition u64_xor := @scalar_xor U64.
+Definition u128_xor := @scalar_xor U128.
+Definition usize_xor := @scalar_xor Usize.
+Definition i8_xor := @scalar_xor I8.
+Definition i16_xor := @scalar_xor I16.
+Definition i32_xor := @scalar_xor I32.
+Definition i64_xor := @scalar_xor I64.
+Definition i128_xor := @scalar_xor I128.
+Definition isize_xor := @scalar_xor Isize.
+
+(** Or *)
+Definition u8_or := @scalar_or U8.
+Definition u16_or := @scalar_or U16.
+Definition u32_or := @scalar_or U32.
+Definition u64_or := @scalar_or U64.
+Definition u128_or := @scalar_or U128.
+Definition usize_or := @scalar_or Usize.
+Definition i8_or := @scalar_or I8.
+Definition i16_or := @scalar_or I16.
+Definition i32_or := @scalar_or I32.
+Definition i64_or := @scalar_or I64.
+Definition i128_or := @scalar_or I128.
+Definition isize_or := @scalar_or Isize.
+
+(** And *)
+Definition u8_and := @scalar_and U8.
+Definition u16_and := @scalar_and U16.
+Definition u32_and := @scalar_and U32.
+Definition u64_and := @scalar_and U64.
+Definition u128_and := @scalar_and U128.
+Definition usize_and := @scalar_and Usize.
+Definition i8_and := @scalar_and I8.
+Definition i16_and := @scalar_and I16.
+Definition i32_and := @scalar_and I32.
+Definition i64_and := @scalar_and I64.
+Definition i128_and := @scalar_and I128.
+Definition isize_and := @scalar_and Isize.
+
+(** Shift left *)
+Definition u8_shl {ty} := @scalar_shl U8 ty.
+Definition u16_shl {ty} := @scalar_shl U16 ty.
+Definition u32_shl {ty} := @scalar_shl U32 ty.
+Definition u64_shl {ty} := @scalar_shl U64 ty.
+Definition u128_shl {ty} := @scalar_shl U128 ty.
+Definition usize_shl {ty} := @scalar_shl Usize ty.
+Definition i8_shl {ty} := @scalar_shl I8 ty.
+Definition i16_shl {ty} := @scalar_shl I16 ty.
+Definition i32_shl {ty} := @scalar_shl I32 ty.
+Definition i64_shl {ty} := @scalar_shl I64 ty.
+Definition i128_shl {ty} := @scalar_shl I128 ty.
+Definition isize_shl {ty} := @scalar_shl Isize ty.
+
+(** Shift right *)
+Definition u8_shr {ty} := @scalar_shr U8 ty.
+Definition u16_shr {ty} := @scalar_shr U16 ty.
+Definition u32_shr {ty} := @scalar_shr U32 ty.
+Definition u64_shr {ty} := @scalar_shr U64 ty.
+Definition u128_shr {ty} := @scalar_shr U128 ty.
+Definition usize_shr {ty} := @scalar_shr Usize ty.
+Definition i8_shr {ty} := @scalar_shr I8 ty.
+Definition i16_shr {ty} := @scalar_shr I16 ty.
+Definition i32_shr {ty} := @scalar_shr I32 ty.
+Definition i64_shr {ty} := @scalar_shr I64 ty.
+Definition i128_shr {ty} := @scalar_shr I128 ty.
+Definition isize_shr {ty} := @scalar_shr Isize ty.
+
+(** Small utility *)
+Definition usize_to_nat (x: usize) : nat := Z.to_nat (to_Z x).
+
+(** Notations *)
+Notation "x %isize" := ((mk_scalar Isize x)%return) (at level 9).
+Notation "x %i8" := ((mk_scalar I8 x)%return) (at level 9).
+Notation "x %i16" := ((mk_scalar I16 x)%return) (at level 9).
+Notation "x %i32" := ((mk_scalar I32 x)%return) (at level 9).
+Notation "x %i64" := ((mk_scalar I64 x)%return) (at level 9).
+Notation "x %i128" := ((mk_scalar I128 x)%return) (at level 9).
+Notation "x %usize" := ((mk_scalar Usize x)%return) (at level 9).
+Notation "x %u8" := ((mk_scalar U8 x)%return) (at level 9).
+Notation "x %u16" := ((mk_scalar U16 x)%return) (at level 9).
+Notation "x %u32" := ((mk_scalar U32 x)%return) (at level 9).
+Notation "x %u64" := ((mk_scalar U64 x)%return) (at level 9).
+Notation "x %u128" := ((mk_scalar U128 x)%return) (at level 9).
+
+Notation "x s= y" := (scalar_eqb x y) (at level 80) : Primitives_scope.
+Notation "x s<> y" := (scalar_neqb x y) (at level 80) : Primitives_scope.
+Notation "x s<= y" := (scalar_leb x y) (at level 80) : Primitives_scope.
+Notation "x s< y" := (scalar_ltb x y) (at level 80) : Primitives_scope.
+Notation "x s>= y" := (scalar_geb x y) (at level 80) : Primitives_scope.
+Notation "x s> y" := (scalar_gtb x y) (at level 80) : Primitives_scope.
+
+(** Constants *)
+Definition core_u8_max := u8_max %u32.
+Definition core_u16_max := u16_max %u32.
+Definition core_u32_max := u32_max %u32.
+Definition core_u64_max := u64_max %u64.
+Definition core_u128_max := u64_max %u128.
+Axiom core_usize_max : usize. (** TODO *)
+Definition core_i8_max := i8_max %i32.
+Definition core_i16_max := i16_max %i32.
+Definition core_i32_max := i32_max %i32.
+Definition core_i64_max := i64_max %i64.
+Definition core_i128_max := i64_max %i128.
+Axiom core_isize_max : isize. (** TODO *)
+
+(*** core::ops *)
+
+(* Trait declaration: [core::ops::index::Index] *)
+Record core_ops_index_Index (Self Idx : Type) := mk_core_ops_index_Index {
+ core_ops_index_Index_Output : Type;
+ core_ops_index_Index_index : Self -> Idx -> result core_ops_index_Index_Output;
+}.
+Arguments mk_core_ops_index_Index {_ _}.
+Arguments core_ops_index_Index_Output {_ _}.
+Arguments core_ops_index_Index_index {_ _}.
+
+(* Trait declaration: [core::ops::index::IndexMut] *)
+Record core_ops_index_IndexMut (Self Idx : Type) := mk_core_ops_index_IndexMut {
+ core_ops_index_IndexMut_indexInst : core_ops_index_Index Self Idx;
+ core_ops_index_IndexMut_index_mut :
+ Self ->
+ Idx ->
+ result (core_ops_index_IndexMut_indexInst.(core_ops_index_Index_Output) *
+ (core_ops_index_IndexMut_indexInst.(core_ops_index_Index_Output) -> result Self));
+}.
+Arguments mk_core_ops_index_IndexMut {_ _}.
+Arguments core_ops_index_IndexMut_indexInst {_ _}.
+Arguments core_ops_index_IndexMut_index_mut {_ _}.
+
+(* Trait declaration [core::ops::deref::Deref] *)
+Record core_ops_deref_Deref (Self : Type) := mk_core_ops_deref_Deref {
+ core_ops_deref_Deref_target : Type;
+ core_ops_deref_Deref_deref : Self -> result core_ops_deref_Deref_target;
+}.
+Arguments mk_core_ops_deref_Deref {_}.
+Arguments core_ops_deref_Deref_target {_}.
+Arguments core_ops_deref_Deref_deref {_}.
+
+(* Trait declaration [core::ops::deref::DerefMut] *)
+Record core_ops_deref_DerefMut (Self : Type) := mk_core_ops_deref_DerefMut {
+ core_ops_deref_DerefMut_derefInst : core_ops_deref_Deref Self;
+ core_ops_deref_DerefMut_deref_mut :
+ Self ->
+ result (core_ops_deref_DerefMut_derefInst.(core_ops_deref_Deref_target) *
+ (core_ops_deref_DerefMut_derefInst.(core_ops_deref_Deref_target) -> result Self));
+}.
+Arguments mk_core_ops_deref_DerefMut {_}.
+Arguments core_ops_deref_DerefMut_derefInst {_}.
+Arguments core_ops_deref_DerefMut_deref_mut {_}.
+
+Record core_ops_range_Range (T : Type) := mk_core_ops_range_Range {
+ core_ops_range_Range_start : T;
+ core_ops_range_Range_end_ : T;
+}.
+Arguments mk_core_ops_range_Range {_}.
+Arguments core_ops_range_Range_start {_}.
+Arguments core_ops_range_Range_end_ {_}.
+
+(*** [alloc] *)
+
+Definition alloc_boxed_Box_deref (T : Type) (x : T) : result T := Return x.
+Definition alloc_boxed_Box_deref_mut (T : Type) (x : T) : result (T * (T -> result T)) :=
+ Return (x, fun x => Return x).
+
+(* Trait instance *)
+Definition alloc_boxed_Box_coreopsDerefInst (Self : Type) : core_ops_deref_Deref Self := {|
+ core_ops_deref_Deref_target := Self;
+ core_ops_deref_Deref_deref := alloc_boxed_Box_deref Self;
+|}.
+
+(* Trait instance *)
+Definition alloc_boxed_Box_coreopsDerefMutInst (Self : Type) : core_ops_deref_DerefMut Self := {|
+ core_ops_deref_DerefMut_derefInst := alloc_boxed_Box_coreopsDerefInst Self;
+ core_ops_deref_DerefMut_deref_mut := alloc_boxed_Box_deref_mut Self;
+|}.
+
+
+(*** Arrays *)
+Definition array T (n : usize) := { l: list T | Z.of_nat (length l) = to_Z n}.
+
+Lemma le_0_usize_max : 0 <= usize_max.
+Proof.
+ pose (H := usize_max_bound).
+ unfold u32_max in H.
+ lia.
+Qed.
+
+Lemma eqb_imp_eq (x y : Z) : Z.eqb x y = true -> x = y.
+Proof.
+ lia.
+Qed.
+
+(* TODO: finish the definitions *)
+Axiom mk_array : forall (T : Type) (n : usize) (l : list T), array T n.
+
+(* For initialization *)
+Axiom array_repeat : forall (T : Type) (n : usize) (x : T), array T n.
+
+Axiom array_index_usize : forall (T : Type) (n : usize) (x : array T n) (i : usize), result T.
+Axiom array_update_usize : forall (T : Type) (n : usize) (x : array T n) (i : usize) (nx : T), result (array T n).
+
+Definition array_index_mut_usize (T : Type) (n : usize) (a : array T n) (i : usize) :
+ result (T * (T -> result (array T n))) :=
+ match array_index_usize T n a i with
+ | Fail_ e => Fail_ e
+ | Return x => Return (x, array_update_usize T n a i)
+ end.
+
+(*** Slice *)
+Definition slice T := { l: list T | Z.of_nat (length l) <= usize_max}.
+
+Axiom slice_len : forall (T : Type) (s : slice T), usize.
+Axiom slice_index_usize : forall (T : Type) (x : slice T) (i : usize), result T.
+Axiom slice_update_usize : forall (T : Type) (x : slice T) (i : usize) (nx : T), result (slice T).
+
+Definition slice_index_mut_usize (T : Type) (s : slice T) (i : usize) :
+ result (T * (T -> result (slice T))) :=
+ match slice_index_usize T s i with
+ | Fail_ e => Fail_ e
+ | Return x => Return (x, slice_update_usize T s i)
+ end.
+
+(*** Subslices *)
+
+Axiom array_to_slice : forall (T : Type) (n : usize) (x : array T n), result (slice T).
+Axiom array_from_slice : forall (T : Type) (n : usize) (x : array T n) (s : slice T), result (array T n).
+
+Definition array_to_slice_mut (T : Type) (n : usize) (a : array T n) :
+ result (slice T * (slice T -> result (array T n))) :=
+ match array_to_slice T n a with
+ | Fail_ e => Fail_ e
+ | Return x => Return (x, array_from_slice T n a)
+ end.
+
+Axiom array_subslice: forall (T : Type) (n : usize) (x : array T n) (r : core_ops_range_Range usize), result (slice T).
+Axiom array_update_subslice: forall (T : Type) (n : usize) (x : array T n) (r : core_ops_range_Range usize) (ns : slice T), result (array T n).
+
+Axiom slice_subslice: forall (T : Type) (x : slice T) (r : core_ops_range_Range usize), result (slice T).
+Axiom slice_update_subslice: forall (T : Type) (x : slice T) (r : core_ops_range_Range usize) (ns : slice T), result (slice T).
+
+(*** Vectors *)
+
+Definition alloc_vec_Vec T := { l: list T | Z.of_nat (length l) <= usize_max }.
+
+Definition alloc_vec_Vec_to_list {T: Type} (v: alloc_vec_Vec T) : list T := proj1_sig v.
+
+Definition alloc_vec_Vec_length {T: Type} (v: alloc_vec_Vec T) : Z := Z.of_nat (length (alloc_vec_Vec_to_list v)).
+
+Definition alloc_vec_Vec_new (T: Type) : alloc_vec_Vec T := (exist _ [] le_0_usize_max).
+
+Lemma alloc_vec_Vec_len_in_usize {T} (v: alloc_vec_Vec T) : usize_min <= alloc_vec_Vec_length v <= usize_max.
+Proof.
+ unfold alloc_vec_Vec_length, usize_min.
+ split.
+ - lia.
+ - apply (proj2_sig v).
+Qed.
+
+Definition alloc_vec_Vec_len (T: Type) (v: alloc_vec_Vec T) : usize :=
+ exist _ (alloc_vec_Vec_length v) (alloc_vec_Vec_len_in_usize v).
+
+Fixpoint list_update {A} (l: list A) (n: nat) (a: A)
+ : list A :=
+ match l with
+ | [] => []
+ | x :: t => match n with
+ | 0%nat => a :: t
+ | S m => x :: (list_update t m a)
+end end.
+
+Definition alloc_vec_Vec_bind {A B} (v: alloc_vec_Vec A) (f: list A -> result (list B)) : result (alloc_vec_Vec B) :=
+ l <- f (alloc_vec_Vec_to_list v) ;
+ match sumbool_of_bool (scalar_le_max Usize (Z.of_nat (length l))) with
+ | left H => Return (exist _ l (scalar_le_max_valid _ _ H))
+ | right _ => Fail_ Failure
+ end.
+
+Definition alloc_vec_Vec_push (T: Type) (v: alloc_vec_Vec T) (x: T) : result (alloc_vec_Vec T) :=
+ alloc_vec_Vec_bind v (fun l => Return (l ++ [x])).
+
+Definition alloc_vec_Vec_insert (T: Type) (v: alloc_vec_Vec T) (i: usize) (x: T) : result (alloc_vec_Vec T) :=
+ alloc_vec_Vec_bind v (fun l =>
+ if to_Z i <? Z.of_nat (length l)
+ then Return (list_update l (usize_to_nat i) x)
+ else Fail_ Failure).
+
+(* Helper *)
+Axiom alloc_vec_Vec_index_usize : forall {T : Type} (v : alloc_vec_Vec T) (i : usize), result T.
+
+(* Helper *)
+Axiom alloc_vec_Vec_update_usize : forall {T : Type} (v : alloc_vec_Vec T) (i : usize) (x : T), result (alloc_vec_Vec T).
+
+Definition alloc_vec_Vec_index_mut_usize {T : Type} (v: alloc_vec_Vec T) (i: usize) :
+ result (T * (T -> result (alloc_vec_Vec T))) :=
+ match alloc_vec_Vec_index_usize v i with
+ | Return x =>
+ Return (x, alloc_vec_Vec_update_usize v i)
+ | Fail_ e => Fail_ e
+ end.
+
+(* Trait declaration: [core::slice::index::private_slice_index::Sealed] *)
+Definition core_slice_index_private_slice_index_Sealed (self : Type) := unit.
+
+(* Trait declaration: [core::slice::index::SliceIndex] *)
+Record core_slice_index_SliceIndex (Self T : Type) := mk_core_slice_index_SliceIndex {
+ core_slice_index_SliceIndex_sealedInst : core_slice_index_private_slice_index_Sealed Self;
+ core_slice_index_SliceIndex_Output : Type;
+ core_slice_index_SliceIndex_get : Self -> T -> result (option core_slice_index_SliceIndex_Output);
+ core_slice_index_SliceIndex_get_mut :
+ Self -> T -> result (option core_slice_index_SliceIndex_Output * (option core_slice_index_SliceIndex_Output -> result T));
+ core_slice_index_SliceIndex_get_unchecked : Self -> const_raw_ptr T -> result (const_raw_ptr core_slice_index_SliceIndex_Output);
+ core_slice_index_SliceIndex_get_unchecked_mut : Self -> mut_raw_ptr T -> result (mut_raw_ptr core_slice_index_SliceIndex_Output);
+ core_slice_index_SliceIndex_index : Self -> T -> result core_slice_index_SliceIndex_Output;
+ core_slice_index_SliceIndex_index_mut :
+ Self -> T -> result (core_slice_index_SliceIndex_Output * (core_slice_index_SliceIndex_Output -> result T));
+}.
+Arguments mk_core_slice_index_SliceIndex {_ _}.
+Arguments core_slice_index_SliceIndex_sealedInst {_ _}.
+Arguments core_slice_index_SliceIndex_Output {_ _}.
+Arguments core_slice_index_SliceIndex_get {_ _}.
+Arguments core_slice_index_SliceIndex_get_mut {_ _}.
+Arguments core_slice_index_SliceIndex_get_unchecked {_ _}.
+Arguments core_slice_index_SliceIndex_get_unchecked_mut {_ _}.
+Arguments core_slice_index_SliceIndex_index {_ _}.
+Arguments core_slice_index_SliceIndex_index_mut {_ _}.
+
+(* [core::slice::index::[T]::index]: forward function *)
+Definition core_slice_index_Slice_index
+ (T Idx : Type) (inst : core_slice_index_SliceIndex Idx (slice T))
+ (s : slice T) (i : Idx) : result inst.(core_slice_index_SliceIndex_Output) :=
+ x <- inst.(core_slice_index_SliceIndex_get) i s;
+ match x with
+ | None => Fail_ Failure
+ | Some x => Return x
+ end.
+
+(* [core::slice::index::Range:::get]: forward function *)
+Axiom core_slice_index_RangeUsize_get : forall (T : Type) (i : core_ops_range_Range usize) (s : slice T), result (option (slice T)).
+
+(* [core::slice::index::Range::get_mut]: forward function *)
+Axiom core_slice_index_RangeUsize_get_mut :
+ forall (T : Type),
+ core_ops_range_Range usize -> slice T ->
+ result (option (slice T) * (option (slice T) -> result (slice T))).
+
+(* [core::slice::index::Range::get_unchecked]: forward function *)
+Definition core_slice_index_RangeUsize_get_unchecked
+ (T : Type) :
+ core_ops_range_Range usize -> const_raw_ptr (slice T) -> result (const_raw_ptr (slice T)) :=
+ (* Don't know what the model should be - for now we always fail to make
+ sure code which uses it fails *)
+ fun _ _ => Fail_ Failure.
+
+(* [core::slice::index::Range::get_unchecked_mut]: forward function *)
+Definition core_slice_index_RangeUsize_get_unchecked_mut
+ (T : Type) :
+ core_ops_range_Range usize -> mut_raw_ptr (slice T) -> result (mut_raw_ptr (slice T)) :=
+ (* Don't know what the model should be - for now we always fail to make
+ sure code which uses it fails *)
+ fun _ _ => Fail_ Failure.
+
+(* [core::slice::index::Range::index]: forward function *)
+Axiom core_slice_index_RangeUsize_index :
+ forall (T : Type), core_ops_range_Range usize -> slice T -> result (slice T).
+
+(* [core::slice::index::Range::index_mut]: forward function *)
+Axiom core_slice_index_RangeUsize_index_mut :
+ forall (T : Type), core_ops_range_Range usize -> slice T -> result (slice T * (slice T -> result (slice T))).
+
+(* [core::slice::index::[T]::index_mut]: forward function *)
+Axiom core_slice_index_Slice_index_mut :
+ forall (T Idx : Type) (inst : core_slice_index_SliceIndex Idx (slice T)),
+ slice T -> Idx ->
+ result (inst.(core_slice_index_SliceIndex_Output) *
+ (inst.(core_slice_index_SliceIndex_Output) -> result (slice T))).
+
+(* [core::array::[T; N]::index]: forward function *)
+Axiom core_array_Array_index :
+ forall (T Idx : Type) (N : usize) (inst : core_ops_index_Index (slice T) Idx)
+ (a : array T N) (i : Idx), result inst.(core_ops_index_Index_Output).
+
+(* [core::array::[T; N]::index_mut]: forward function *)
+Axiom core_array_Array_index_mut :
+ forall (T Idx : Type) (N : usize) (inst : core_ops_index_IndexMut (slice T) Idx)
+ (a : array T N) (i : Idx),
+ result (inst.(core_ops_index_IndexMut_indexInst).(core_ops_index_Index_Output) *
+ (inst.(core_ops_index_IndexMut_indexInst).(core_ops_index_Index_Output) -> result (array T N))).
+
+(* Trait implementation: [core::slice::index::private_slice_index::Range] *)
+Definition core_slice_index_private_slice_index_SealedRangeUsizeInst
+ : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) := tt.
+
+(* Trait implementation: [core::slice::index::Range] *)
+Definition core_slice_index_SliceIndexRangeUsizeSliceTInst (T : Type) :
+ core_slice_index_SliceIndex (core_ops_range_Range usize) (slice T) := {|
+ core_slice_index_SliceIndex_sealedInst := core_slice_index_private_slice_index_SealedRangeUsizeInst;
+ core_slice_index_SliceIndex_Output := slice T;
+ core_slice_index_SliceIndex_get := core_slice_index_RangeUsize_get T;
+ core_slice_index_SliceIndex_get_mut := core_slice_index_RangeUsize_get_mut T;
+ core_slice_index_SliceIndex_get_unchecked := core_slice_index_RangeUsize_get_unchecked T;
+ core_slice_index_SliceIndex_get_unchecked_mut := core_slice_index_RangeUsize_get_unchecked_mut T;
+ core_slice_index_SliceIndex_index := core_slice_index_RangeUsize_index T;
+ core_slice_index_SliceIndex_index_mut := core_slice_index_RangeUsize_index_mut T;
+|}.
+
+(* Trait implementation: [core::slice::index::[T]] *)
+Definition core_ops_index_IndexSliceTIInst (T Idx : Type)
+ (inst : core_slice_index_SliceIndex Idx (slice T)) :
+ core_ops_index_Index (slice T) Idx := {|
+ core_ops_index_Index_Output := inst.(core_slice_index_SliceIndex_Output);
+ core_ops_index_Index_index := core_slice_index_Slice_index T Idx inst;
+|}.
+
+(* Trait implementation: [core::slice::index::[T]] *)
+Definition core_ops_index_IndexMutSliceTIInst (T Idx : Type)
+ (inst : core_slice_index_SliceIndex Idx (slice T)) :
+ core_ops_index_IndexMut (slice T) Idx := {|
+ core_ops_index_IndexMut_indexInst := core_ops_index_IndexSliceTIInst T Idx inst;
+ core_ops_index_IndexMut_index_mut := core_slice_index_Slice_index_mut T Idx inst;
+|}.
+
+(* Trait implementation: [core::array::[T; N]] *)
+Definition core_ops_index_IndexArrayInst (T Idx : Type) (N : usize)
+ (inst : core_ops_index_Index (slice T) Idx) :
+ core_ops_index_Index (array T N) Idx := {|
+ core_ops_index_Index_Output := inst.(core_ops_index_Index_Output);
+ core_ops_index_Index_index := core_array_Array_index T Idx N inst;
+|}.
+
+(* Trait implementation: [core::array::[T; N]] *)
+Definition core_ops_index_IndexMutArrayInst (T Idx : Type) (N : usize)
+ (inst : core_ops_index_IndexMut (slice T) Idx) :
+ core_ops_index_IndexMut (array T N) Idx := {|
+ core_ops_index_IndexMut_indexInst := core_ops_index_IndexArrayInst T Idx N inst.(core_ops_index_IndexMut_indexInst);
+ core_ops_index_IndexMut_index_mut := core_array_Array_index_mut T Idx N inst;
+|}.
+
+(* [core::slice::index::usize::get]: forward function *)
+Axiom core_slice_index_usize_get : forall (T : Type), usize -> slice T -> result (option T).
+
+(* [core::slice::index::usize::get_mut]: forward function *)
+Axiom core_slice_index_usize_get_mut :
+ forall (T : Type), usize -> slice T -> result (option T * (option T -> result (slice T))).
+
+(* [core::slice::index::usize::get_unchecked]: forward function *)
+Axiom core_slice_index_usize_get_unchecked :
+ forall (T : Type), usize -> const_raw_ptr (slice T) -> result (const_raw_ptr T).
+
+(* [core::slice::index::usize::get_unchecked_mut]: forward function *)
+Axiom core_slice_index_usize_get_unchecked_mut :
+ forall (T : Type), usize -> mut_raw_ptr (slice T) -> result (mut_raw_ptr T).
+
+(* [core::slice::index::usize::index]: forward function *)
+Axiom core_slice_index_usize_index : forall (T : Type), usize -> slice T -> result T.
+
+(* [core::slice::index::usize::index_mut]: forward function *)
+Axiom core_slice_index_usize_index_mut :
+ forall (T : Type), usize -> slice T -> result (T * (T -> result (slice T))).
+
+(* Trait implementation: [core::slice::index::private_slice_index::usize] *)
+Definition core_slice_index_private_slice_index_SealedUsizeInst
+ : core_slice_index_private_slice_index_Sealed usize := tt.
+
+(* Trait implementation: [core::slice::index::usize] *)
+Definition core_slice_index_SliceIndexUsizeSliceTInst (T : Type) :
+ core_slice_index_SliceIndex usize (slice T) := {|
+ core_slice_index_SliceIndex_sealedInst := core_slice_index_private_slice_index_SealedUsizeInst;
+ core_slice_index_SliceIndex_Output := T;
+ core_slice_index_SliceIndex_get := core_slice_index_usize_get T;
+ core_slice_index_SliceIndex_get_mut := core_slice_index_usize_get_mut T;
+ core_slice_index_SliceIndex_get_unchecked := core_slice_index_usize_get_unchecked T;
+ core_slice_index_SliceIndex_get_unchecked_mut := core_slice_index_usize_get_unchecked_mut T;
+ core_slice_index_SliceIndex_index := core_slice_index_usize_index T;
+ core_slice_index_SliceIndex_index_mut := core_slice_index_usize_index_mut T;
+|}.
+
+(* [alloc::vec::Vec::index]: forward function *)
+Axiom alloc_vec_Vec_index : forall (T Idx : Type) (inst : core_slice_index_SliceIndex Idx (slice T))
+ (Self : alloc_vec_Vec T) (i : Idx), result inst.(core_slice_index_SliceIndex_Output).
+
+(* [alloc::vec::Vec::index_mut]: forward function *)
+Axiom alloc_vec_Vec_index_mut : forall (T Idx : Type) (inst : core_slice_index_SliceIndex Idx (slice T))
+ (Self : alloc_vec_Vec T) (i : Idx),
+ result (inst.(core_slice_index_SliceIndex_Output) *
+ (inst.(core_slice_index_SliceIndex_Output) -> result (alloc_vec_Vec T))).
+
+(* Trait implementation: [alloc::vec::Vec] *)
+Definition alloc_vec_Vec_coreopsindexIndexInst (T Idx : Type)
+ (inst : core_slice_index_SliceIndex Idx (slice T)) :
+ core_ops_index_Index (alloc_vec_Vec T) Idx := {|
+ core_ops_index_Index_Output := inst.(core_slice_index_SliceIndex_Output);
+ core_ops_index_Index_index := alloc_vec_Vec_index T Idx inst;
+|}.
+
+(* Trait implementation: [alloc::vec::Vec] *)
+Definition alloc_vec_Vec_coreopsindexIndexMutInst (T Idx : Type)
+ (inst : core_slice_index_SliceIndex Idx (slice T)) :
+ core_ops_index_IndexMut (alloc_vec_Vec T) Idx := {|
+ core_ops_index_IndexMut_indexInst := alloc_vec_Vec_coreopsindexIndexInst T Idx inst;
+ core_ops_index_IndexMut_index_mut := alloc_vec_Vec_index_mut T Idx inst;
+|}.
+
+(*** Theorems *)
+
+Axiom alloc_vec_Vec_index_eq : forall {a : Type} (v : alloc_vec_Vec a) (i : usize) (x : a),
+ alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i =
+ alloc_vec_Vec_index_usize v i.
+
+Axiom alloc_vec_Vec_index_mut_eq : forall {a : Type} (v : alloc_vec_Vec a) (i : usize) (x : a),
+ alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i =
+ alloc_vec_Vec_index_mut_usize v i.
+
+End Primitives.
diff --git a/tests/coq/demo/_CoqProject b/tests/coq/demo/_CoqProject
new file mode 100644
index 00000000..62554699
--- /dev/null
+++ b/tests/coq/demo/_CoqProject
@@ -0,0 +1,7 @@
+# This file was automatically generated - see ../Makefile
+-R . Lib
+-arg -w
+-arg all
+
+Demo.v
+Primitives.v
diff --git a/tests/fstar-split/demo/Demo.fst b/tests/fstar-split/demo/Demo.fst
new file mode 100644
index 00000000..ab746157
--- /dev/null
+++ b/tests/fstar-split/demo/Demo.fst
@@ -0,0 +1,187 @@
+(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
+(** [demo] *)
+module Demo
+open Primitives
+
+#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
+
+(** [demo::choose]: forward function
+ Source: 'src/demo.rs', lines 5:0-5:70 *)
+let choose (t : Type0) (b : bool) (x : t) (y : t) : result t =
+ if b then Return x else Return y
+
+(** [demo::choose]: backward function 0
+ Source: 'src/demo.rs', lines 5:0-5:70 *)
+let choose_back
+ (t : Type0) (b : bool) (x : t) (y : t) (ret : t) : result (t & t) =
+ if b then Return (ret, y) else Return (x, ret)
+
+(** [demo::mul2_add1]: forward function
+ Source: 'src/demo.rs', lines 13:0-13:31 *)
+let mul2_add1 (x : u32) : result u32 =
+ let* i = u32_add x x in u32_add i 1
+
+(** [demo::use_mul2_add1]: forward function
+ Source: 'src/demo.rs', lines 17:0-17:43 *)
+let use_mul2_add1 (x : u32) (y : u32) : result u32 =
+ let* i = mul2_add1 x in u32_add i y
+
+(** [demo::incr]: merged forward/backward function
+ (there is a single backward function, and the forward function returns ())
+ Source: 'src/demo.rs', lines 21:0-21:31 *)
+let incr (x : u32) : result u32 =
+ u32_add x 1
+
+(** [demo::CList]
+ Source: 'src/demo.rs', lines 27:0-27:17 *)
+type cList_t (t : Type0) =
+| CList_CCons : t -> cList_t t -> cList_t t
+| CList_CNil : cList_t t
+
+(** [demo::list_nth]: forward function
+ Source: 'src/demo.rs', lines 32:0-32:56 *)
+let rec list_nth (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth t n1 tl i1
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut]: forward function
+ Source: 'src/demo.rs', lines 47:0-47:68 *)
+let rec list_nth_mut
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0
+ then Return x
+ else let* i1 = u32_sub i 1 in list_nth_mut t n1 tl i1
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut]: backward function 0
+ Source: 'src/demo.rs', lines 47:0-47:68 *)
+let rec list_nth_mut_back
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) :
+ result (cList_t t)
+ =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0
+ then Return (CList_CCons ret tl)
+ else
+ let* i1 = u32_sub i 1 in
+ let* tl1 = list_nth_mut_back t n1 tl i1 ret in
+ Return (CList_CCons x tl1)
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut1]: loop 0: forward function
+ Source: 'src/demo.rs', lines 62:0-71:1 *)
+let rec list_nth_mut1_loop
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0
+ then Return x
+ else let* i1 = u32_sub i 1 in list_nth_mut1_loop t n1 tl i1
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut1]: forward function
+ Source: 'src/demo.rs', lines 62:0-62:77 *)
+let list_nth_mut1 (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
+ list_nth_mut1_loop t n l i
+
+(** [demo::list_nth_mut1]: loop 0: backward function 0
+ Source: 'src/demo.rs', lines 62:0-71:1 *)
+let rec list_nth_mut1_loop_back
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) :
+ result (cList_t t)
+ =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0
+ then Return (CList_CCons ret tl)
+ else
+ let* i1 = u32_sub i 1 in
+ let* tl1 = list_nth_mut1_loop_back t n1 tl i1 ret in
+ Return (CList_CCons x tl1)
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut1]: backward function 0
+ Source: 'src/demo.rs', lines 62:0-62:77 *)
+let list_nth_mut1_back
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) (ret : t) :
+ result (cList_t t)
+ =
+ list_nth_mut1_loop_back t n l i ret
+
+(** [demo::i32_id]: forward function
+ Source: 'src/demo.rs', lines 73:0-73:28 *)
+let rec i32_id (n : nat) (i : i32) : result i32 =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ if i = 0
+ then Return 0
+ else let* i1 = i32_sub i 1 in let* i2 = i32_id n1 i1 in i32_add i2 1
+
+(** Trait declaration: [demo::Counter]
+ Source: 'src/demo.rs', lines 83:0-83:17 *)
+noeq type counter_t (self : Type0) = {
+ incr : self -> result usize;
+ incr_back : self -> result self;
+}
+
+(** [demo::{usize}::incr]: forward function
+ Source: 'src/demo.rs', lines 88:4-88:31 *)
+let usize_incr (self : usize) : result usize =
+ let* _ = usize_add self 1 in Return self
+
+(** [demo::{usize}::incr]: backward function 0
+ Source: 'src/demo.rs', lines 88:4-88:31 *)
+let usize_incr_back (self : usize) : result usize =
+ usize_add self 1
+
+(** Trait implementation: [demo::{usize}]
+ Source: 'src/demo.rs', lines 87:0-87:22 *)
+let demo_CounterUsizeInst : counter_t usize = {
+ incr = usize_incr;
+ incr_back = usize_incr_back;
+}
+
+(** [demo::use_counter]: forward function
+ Source: 'src/demo.rs', lines 95:0-95:59 *)
+let use_counter
+ (t : Type0) (counterTInst : counter_t t) (cnt : t) : result usize =
+ counterTInst.incr cnt
+
+(** [demo::use_counter]: backward function 0
+ Source: 'src/demo.rs', lines 95:0-95:59 *)
+let use_counter_back
+ (t : Type0) (counterTInst : counter_t t) (cnt : t) : result t =
+ counterTInst.incr_back cnt
+
diff --git a/tests/fstar-split/demo/Makefile b/tests/fstar-split/demo/Makefile
new file mode 100644
index 00000000..fa7d1f36
--- /dev/null
+++ b/tests/fstar-split/demo/Makefile
@@ -0,0 +1,49 @@
+# This file was automatically generated - modify ../Makefile.template instead
+INCLUDE_DIRS = .
+
+FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
+
+FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
+
+FSTAR_OPTIONS = $(FSTAR_HINTS) \
+ --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
+ --warn_error '+241@247+285-274' \
+
+FSTAR_EXE ?= fstar.exe
+FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
+
+FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
+
+# The F* roots are used to compute the dependency graph, and generate the .depend file
+FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
+
+# Build all the files
+all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
+
+# This is the right way to ensure the .depend file always gets re-built.
+ifeq (,$(filter %-in,$(MAKECMDGOALS)))
+ifndef NODEPEND
+ifndef MAKE_RESTARTS
+.depend: .FORCE
+ $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
+
+.PHONY: .FORCE
+.FORCE:
+endif
+endif
+
+include .depend
+endif
+
+# For the interactive mode
+%.fst-in %.fsti-in:
+ @echo $(FSTAR_OPTIONS)
+
+# Generete the .checked files in batch mode
+%.checked:
+ $(FSTAR) $(FSTAR_OPTIONS) $< && \
+ touch -c $@
+
+.PHONY: clean
+clean:
+ rm -f obj/*
diff --git a/tests/fstar-split/demo/Primitives.fst b/tests/fstar-split/demo/Primitives.fst
new file mode 100644
index 00000000..a3ffbde4
--- /dev/null
+++ b/tests/fstar-split/demo/Primitives.fst
@@ -0,0 +1,884 @@
+/// This file lists primitive and assumed functions and types
+module Primitives
+open FStar.Mul
+open FStar.List.Tot
+
+#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
+
+(*** Utilities *)
+val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
+ ls':list a{
+ length ls' = length ls /\
+ index ls' i == x
+ }
+#push-options "--fuel 1"
+let rec list_update #a ls i x =
+ match ls with
+ | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
+#pop-options
+
+(*** Result *)
+type error : Type0 =
+| Failure
+| OutOfFuel
+
+type result (a : Type0) : Type0 =
+| Return : v:a -> result a
+| Fail : e:error -> result a
+
+// Monadic return operator
+unfold let return (#a : Type0) (x : a) : result a = Return x
+
+// Monadic bind operator.
+// Allows to use the notation:
+// ```
+// let* x = y in
+// ...
+// ```
+unfold let (let*) (#a #b : Type0) (m: result a)
+ (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
+ result b =
+ match m with
+ | Return x -> f x
+ | Fail e -> Fail e
+
+// Monadic assert(...)
+let massert (b:bool) : result unit = if b then Return () else Fail Failure
+
+// Normalize and unwrap a successful result (used for globals).
+let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
+
+(*** Misc *)
+type char = FStar.Char.char
+type string = string
+
+let is_zero (n: nat) : bool = n = 0
+let decrease (n: nat{n > 0}) : nat = n - 1
+
+let core_mem_replace (a : Type0) (x : a) (y : a) : a = x
+let core_mem_replace_back (a : Type0) (x : a) (y : a) : a = y
+
+// We don't really use raw pointers for now
+type mut_raw_ptr (t : Type0) = { v : t }
+type const_raw_ptr (t : Type0) = { v : t }
+
+(*** Scalars *)
+/// Rem.: most of the following code was partially generated
+
+assume val size_numbits : pos
+
+// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
+
+let isize_min : int = -9223372036854775808 // TODO: should be opaque
+let isize_max : int = 9223372036854775807 // TODO: should be opaque
+let i8_min : int = -128
+let i8_max : int = 127
+let i16_min : int = -32768
+let i16_max : int = 32767
+let i32_min : int = -2147483648
+let i32_max : int = 2147483647
+let i64_min : int = -9223372036854775808
+let i64_max : int = 9223372036854775807
+let i128_min : int = -170141183460469231731687303715884105728
+let i128_max : int = 170141183460469231731687303715884105727
+let usize_min : int = 0
+let usize_max : int = 4294967295 // TODO: should be opaque
+let u8_min : int = 0
+let u8_max : int = 255
+let u16_min : int = 0
+let u16_max : int = 65535
+let u32_min : int = 0
+let u32_max : int = 4294967295
+let u64_min : int = 0
+let u64_max : int = 18446744073709551615
+let u128_min : int = 0
+let u128_max : int = 340282366920938463463374607431768211455
+
+type scalar_ty =
+| Isize
+| I8
+| I16
+| I32
+| I64
+| I128
+| Usize
+| U8
+| U16
+| U32
+| U64
+| U128
+
+let is_unsigned = function
+ | Isize | I8 | I16 | I32 | I64 | I128 -> false
+ | Usize | U8 | U16 | U32 | U64 | U128 -> true
+
+let scalar_min (ty : scalar_ty) : int =
+ match ty with
+ | Isize -> isize_min
+ | I8 -> i8_min
+ | I16 -> i16_min
+ | I32 -> i32_min
+ | I64 -> i64_min
+ | I128 -> i128_min
+ | Usize -> usize_min
+ | U8 -> u8_min
+ | U16 -> u16_min
+ | U32 -> u32_min
+ | U64 -> u64_min
+ | U128 -> u128_min
+
+let scalar_max (ty : scalar_ty) : int =
+ match ty with
+ | Isize -> isize_max
+ | I8 -> i8_max
+ | I16 -> i16_max
+ | I32 -> i32_max
+ | I64 -> i64_max
+ | I128 -> i128_max
+ | Usize -> usize_max
+ | U8 -> u8_max
+ | U16 -> u16_max
+ | U32 -> u32_max
+ | U64 -> u64_max
+ | U128 -> u128_max
+
+type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
+
+let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
+ if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
+
+let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
+
+let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ if y <> 0 then mk_scalar ty (x / y) else Fail Failure
+
+/// The remainder operation
+let int_rem (x : int) (y : int{y <> 0}) : int =
+ if x >= 0 then (x % y) else -(x % y)
+
+(* Checking consistency with Rust *)
+let _ = assert_norm(int_rem 1 2 = 1)
+let _ = assert_norm(int_rem (-1) 2 = -1)
+let _ = assert_norm(int_rem 1 (-2) = 1)
+let _ = assert_norm(int_rem (-1) (-2) = -1)
+
+let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
+
+let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x + y)
+
+let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x - y)
+
+let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x * y)
+
+let scalar_xor (#ty : scalar_ty)
+ (x : scalar ty) (y : scalar ty) : scalar ty =
+ match ty with
+ | U8 -> FStar.UInt.logxor #8 x y
+ | U16 -> FStar.UInt.logxor #16 x y
+ | U32 -> FStar.UInt.logxor #32 x y
+ | U64 -> FStar.UInt.logxor #64 x y
+ | U128 -> FStar.UInt.logxor #128 x y
+ | Usize -> admit() // TODO
+ | I8 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 8);
+ normalize_spec (scalar I8);
+ FStar.Int.logxor #8 x y
+ | I16 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 16);
+ normalize_spec (scalar I16);
+ FStar.Int.logxor #16 x y
+ | I32 -> FStar.Int.logxor #32 x y
+ | I64 -> FStar.Int.logxor #64 x y
+ | I128 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 128);
+ normalize_spec (scalar I128);
+ FStar.Int.logxor #128 x y
+ | Isize -> admit() // TODO
+
+let scalar_or (#ty : scalar_ty)
+ (x : scalar ty) (y : scalar ty) : scalar ty =
+ match ty with
+ | U8 -> FStar.UInt.logor #8 x y
+ | U16 -> FStar.UInt.logor #16 x y
+ | U32 -> FStar.UInt.logor #32 x y
+ | U64 -> FStar.UInt.logor #64 x y
+ | U128 -> FStar.UInt.logor #128 x y
+ | Usize -> admit() // TODO
+ | I8 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 8);
+ normalize_spec (scalar I8);
+ FStar.Int.logor #8 x y
+ | I16 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 16);
+ normalize_spec (scalar I16);
+ FStar.Int.logor #16 x y
+ | I32 -> FStar.Int.logor #32 x y
+ | I64 -> FStar.Int.logor #64 x y
+ | I128 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 128);
+ normalize_spec (scalar I128);
+ FStar.Int.logor #128 x y
+ | Isize -> admit() // TODO
+
+let scalar_and (#ty : scalar_ty)
+ (x : scalar ty) (y : scalar ty) : scalar ty =
+ match ty with
+ | U8 -> FStar.UInt.logand #8 x y
+ | U16 -> FStar.UInt.logand #16 x y
+ | U32 -> FStar.UInt.logand #32 x y
+ | U64 -> FStar.UInt.logand #64 x y
+ | U128 -> FStar.UInt.logand #128 x y
+ | Usize -> admit() // TODO
+ | I8 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 8);
+ normalize_spec (scalar I8);
+ FStar.Int.logand #8 x y
+ | I16 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 16);
+ normalize_spec (scalar I16);
+ FStar.Int.logand #16 x y
+ | I32 -> FStar.Int.logand #32 x y
+ | I64 -> FStar.Int.logand #64 x y
+ | I128 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 128);
+ normalize_spec (scalar I128);
+ FStar.Int.logand #128 x y
+ | Isize -> admit() // TODO
+
+// Shift left
+let scalar_shl (#ty0 #ty1 : scalar_ty)
+ (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
+ admit()
+
+// Shift right
+let scalar_shr (#ty0 #ty1 : scalar_ty)
+ (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
+ admit()
+
+(** Cast an integer from a [src_ty] to a [tgt_ty] *)
+// TODO: check the semantics of casts in Rust
+let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
+ mk_scalar tgt_ty x
+
+// This can't fail, but for now we make all casts faillible (easier for the translation)
+let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
+ mk_scalar tgt_ty (if x then 1 else 0)
+
+/// The scalar types
+type isize : eqtype = scalar Isize
+type i8 : eqtype = scalar I8
+type i16 : eqtype = scalar I16
+type i32 : eqtype = scalar I32
+type i64 : eqtype = scalar I64
+type i128 : eqtype = scalar I128
+type usize : eqtype = scalar Usize
+type u8 : eqtype = scalar U8
+type u16 : eqtype = scalar U16
+type u32 : eqtype = scalar U32
+type u64 : eqtype = scalar U64
+type u128 : eqtype = scalar U128
+
+
+let core_isize_min : isize = isize_min
+let core_isize_max : isize = isize_max
+let core_i8_min : i8 = i8_min
+let core_i8_max : i8 = i8_max
+let core_i16_min : i16 = i16_min
+let core_i16_max : i16 = i16_max
+let core_i32_min : i32 = i32_min
+let core_i32_max : i32 = i32_max
+let core_i64_min : i64 = i64_min
+let core_i64_max : i64 = i64_max
+let core_i128_min : i128 = i128_min
+let core_i128_max : i128 = i128_max
+
+let core_usize_min : usize = usize_min
+let core_usize_max : usize = usize_max
+let core_u8_min : u8 = u8_min
+let core_u8_max : u8 = u8_max
+let core_u16_min : u16 = u16_min
+let core_u16_max : u16 = u16_max
+let core_u32_min : u32 = u32_min
+let core_u32_max : u32 = u32_max
+let core_u64_min : u64 = u64_min
+let core_u64_max : u64 = u64_max
+let core_u128_min : u128 = u128_min
+let core_u128_max : u128 = u128_max
+
+/// Negation
+let isize_neg = scalar_neg #Isize
+let i8_neg = scalar_neg #I8
+let i16_neg = scalar_neg #I16
+let i32_neg = scalar_neg #I32
+let i64_neg = scalar_neg #I64
+let i128_neg = scalar_neg #I128
+
+/// Division
+let isize_div = scalar_div #Isize
+let i8_div = scalar_div #I8
+let i16_div = scalar_div #I16
+let i32_div = scalar_div #I32
+let i64_div = scalar_div #I64
+let i128_div = scalar_div #I128
+let usize_div = scalar_div #Usize
+let u8_div = scalar_div #U8
+let u16_div = scalar_div #U16
+let u32_div = scalar_div #U32
+let u64_div = scalar_div #U64
+let u128_div = scalar_div #U128
+
+/// Remainder
+let isize_rem = scalar_rem #Isize
+let i8_rem = scalar_rem #I8
+let i16_rem = scalar_rem #I16
+let i32_rem = scalar_rem #I32
+let i64_rem = scalar_rem #I64
+let i128_rem = scalar_rem #I128
+let usize_rem = scalar_rem #Usize
+let u8_rem = scalar_rem #U8
+let u16_rem = scalar_rem #U16
+let u32_rem = scalar_rem #U32
+let u64_rem = scalar_rem #U64
+let u128_rem = scalar_rem #U128
+
+/// Addition
+let isize_add = scalar_add #Isize
+let i8_add = scalar_add #I8
+let i16_add = scalar_add #I16
+let i32_add = scalar_add #I32
+let i64_add = scalar_add #I64
+let i128_add = scalar_add #I128
+let usize_add = scalar_add #Usize
+let u8_add = scalar_add #U8
+let u16_add = scalar_add #U16
+let u32_add = scalar_add #U32
+let u64_add = scalar_add #U64
+let u128_add = scalar_add #U128
+
+/// Subtraction
+let isize_sub = scalar_sub #Isize
+let i8_sub = scalar_sub #I8
+let i16_sub = scalar_sub #I16
+let i32_sub = scalar_sub #I32
+let i64_sub = scalar_sub #I64
+let i128_sub = scalar_sub #I128
+let usize_sub = scalar_sub #Usize
+let u8_sub = scalar_sub #U8
+let u16_sub = scalar_sub #U16
+let u32_sub = scalar_sub #U32
+let u64_sub = scalar_sub #U64
+let u128_sub = scalar_sub #U128
+
+/// Multiplication
+let isize_mul = scalar_mul #Isize
+let i8_mul = scalar_mul #I8
+let i16_mul = scalar_mul #I16
+let i32_mul = scalar_mul #I32
+let i64_mul = scalar_mul #I64
+let i128_mul = scalar_mul #I128
+let usize_mul = scalar_mul #Usize
+let u8_mul = scalar_mul #U8
+let u16_mul = scalar_mul #U16
+let u32_mul = scalar_mul #U32
+let u64_mul = scalar_mul #U64
+let u128_mul = scalar_mul #U128
+
+/// Xor
+let u8_xor = scalar_xor #U8
+let u16_xor = scalar_xor #U16
+let u32_xor = scalar_xor #U32
+let u64_xor = scalar_xor #U64
+let u128_xor = scalar_xor #U128
+let usize_xor = scalar_xor #Usize
+let i8_xor = scalar_xor #I8
+let i16_xor = scalar_xor #I16
+let i32_xor = scalar_xor #I32
+let i64_xor = scalar_xor #I64
+let i128_xor = scalar_xor #I128
+let isize_xor = scalar_xor #Isize
+
+/// Or
+let u8_or = scalar_or #U8
+let u16_or = scalar_or #U16
+let u32_or = scalar_or #U32
+let u64_or = scalar_or #U64
+let u128_or = scalar_or #U128
+let usize_or = scalar_or #Usize
+let i8_or = scalar_or #I8
+let i16_or = scalar_or #I16
+let i32_or = scalar_or #I32
+let i64_or = scalar_or #I64
+let i128_or = scalar_or #I128
+let isize_or = scalar_or #Isize
+
+/// And
+let u8_and = scalar_and #U8
+let u16_and = scalar_and #U16
+let u32_and = scalar_and #U32
+let u64_and = scalar_and #U64
+let u128_and = scalar_and #U128
+let usize_and = scalar_and #Usize
+let i8_and = scalar_and #I8
+let i16_and = scalar_and #I16
+let i32_and = scalar_and #I32
+let i64_and = scalar_and #I64
+let i128_and = scalar_and #I128
+let isize_and = scalar_and #Isize
+
+/// Shift left
+let u8_shl #ty = scalar_shl #U8 #ty
+let u16_shl #ty = scalar_shl #U16 #ty
+let u32_shl #ty = scalar_shl #U32 #ty
+let u64_shl #ty = scalar_shl #U64 #ty
+let u128_shl #ty = scalar_shl #U128 #ty
+let usize_shl #ty = scalar_shl #Usize #ty
+let i8_shl #ty = scalar_shl #I8 #ty
+let i16_shl #ty = scalar_shl #I16 #ty
+let i32_shl #ty = scalar_shl #I32 #ty
+let i64_shl #ty = scalar_shl #I64 #ty
+let i128_shl #ty = scalar_shl #I128 #ty
+let isize_shl #ty = scalar_shl #Isize #ty
+
+/// Shift right
+let u8_shr #ty = scalar_shr #U8 #ty
+let u16_shr #ty = scalar_shr #U16 #ty
+let u32_shr #ty = scalar_shr #U32 #ty
+let u64_shr #ty = scalar_shr #U64 #ty
+let u128_shr #ty = scalar_shr #U128 #ty
+let usize_shr #ty = scalar_shr #Usize #ty
+let i8_shr #ty = scalar_shr #I8 #ty
+let i16_shr #ty = scalar_shr #I16 #ty
+let i32_shr #ty = scalar_shr #I32 #ty
+let i64_shr #ty = scalar_shr #I64 #ty
+let i128_shr #ty = scalar_shr #I128 #ty
+let isize_shr #ty = scalar_shr #Isize #ty
+
+(*** core::ops *)
+
+// Trait declaration: [core::ops::index::Index]
+noeq type core_ops_index_Index (self idx : Type0) = {
+ output : Type0;
+ index : self → idx → result output
+}
+
+// Trait declaration: [core::ops::index::IndexMut]
+noeq type core_ops_index_IndexMut (self idx : Type0) = {
+ indexInst : core_ops_index_Index self idx;
+ index_mut : self → idx → result indexInst.output;
+ index_mut_back : self → idx → indexInst.output → result self;
+}
+
+// Trait declaration [core::ops::deref::Deref]
+noeq type core_ops_deref_Deref (self : Type0) = {
+ target : Type0;
+ deref : self → result target;
+}
+
+// Trait declaration [core::ops::deref::DerefMut]
+noeq type core_ops_deref_DerefMut (self : Type0) = {
+ derefInst : core_ops_deref_Deref self;
+ deref_mut : self → result derefInst.target;
+ deref_mut_back : self → derefInst.target → result self;
+}
+
+type core_ops_range_Range (a : Type0) = {
+ start : a;
+ end_ : a;
+}
+
+(*** [alloc] *)
+
+let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
+let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result t = Return x
+let alloc_boxed_Box_deref_mut_back (t : Type) (_ : t) (x : t) : result t = Return x
+
+// Trait instance
+let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
+ target = self;
+ deref = alloc_boxed_Box_deref self;
+}
+
+// Trait instance
+let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
+ derefInst = alloc_boxed_Box_coreopsDerefInst self;
+ deref_mut = alloc_boxed_Box_deref_mut self;
+ deref_mut_back = alloc_boxed_Box_deref_mut_back self;
+}
+
+(*** Array *)
+type array (a : Type0) (n : usize) = s:list a{length s = n}
+
+// We tried putting the normalize_term condition as a refinement on the list
+// but it didn't work. It works with the requires clause.
+let mk_array (a : Type0) (n : usize)
+ (l : list a) :
+ Pure (array a n)
+ (requires (normalize_term(FStar.List.Tot.length l) = n))
+ (ensures (fun _ -> True)) =
+ normalize_term_spec (FStar.List.Tot.length l);
+ l
+
+let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) : result (array a n) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+(*** Slice *)
+type slice (a : Type0) = s:list a{length s <= usize_max}
+
+let slice_len (a : Type0) (s : slice a) : usize = length s
+
+let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+(*** Subslices *)
+
+let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
+let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
+ if length s = n then Return s
+ else Fail Failure
+
+// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
+let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
+ admit()
+
+let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
+ admit()
+
+let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
+ admit()
+
+let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
+ admit()
+
+let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
+ admit()
+
+(*** Vector *)
+type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
+
+let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
+let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
+
+// Helper
+let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
+ if i < length v then Return (index v i) else Fail Failure
+// Helper
+let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
+ if i < length v then Return (list_update v i x) else Fail Failure
+
+// The **forward** function shouldn't be used
+let alloc_vec_Vec_push_fwd (a : Type0) (v : alloc_vec_Vec a) (x : a) : unit = ()
+let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
+ Pure (result (alloc_vec_Vec a))
+ (requires True)
+ (ensures (fun res ->
+ match res with
+ | Fail e -> e == Failure
+ | Return v' -> length v' = length v + 1)) =
+ if length v < usize_max then begin
+ (**) assert_norm(length [x] == 1);
+ (**) append_length v [x];
+ (**) assert(length (append v [x]) = length v + 1);
+ Return (append v [x])
+ end
+ else Fail Failure
+
+// The **forward** function shouldn't be used
+let alloc_vec_Vec_insert_fwd (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result unit =
+ if i < length v then Return () else Fail Failure
+let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
+ if i < length v then Return (list_update v i x) else Fail Failure
+
+// Trait declaration: [core::slice::index::private_slice_index::Sealed]
+type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
+
+// Trait declaration: [core::slice::index::SliceIndex]
+noeq type core_slice_index_SliceIndex (self t : Type0) = {
+ sealedInst : core_slice_index_private_slice_index_Sealed self;
+ output : Type0;
+ get : self → t → result (option output);
+ get_mut : self → t → result (option output);
+ get_mut_back : self → t → option output → result t;
+ get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
+ get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
+ index : self → t → result output;
+ index_mut : self → t → result output;
+ index_mut_back : self → t → output → result t;
+}
+
+// [core::slice::index::[T]::index]: forward function
+let core_slice_index_Slice_index
+ (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (s : slice t) (i : idx) : result inst.output =
+ let* x = inst.get i s in
+ match x with
+ | None -> Fail Failure
+ | Some x -> Return x
+
+// [core::slice::index::Range:::get]: forward function
+let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
+ result (option (slice t)) =
+ admit () // TODO
+
+// [core::slice::index::Range::get_mut]: forward function
+let core_slice_index_RangeUsize_get_mut
+ (t : Type0) : core_ops_range_Range usize → slice t → result (option (slice t)) =
+ admit () // TODO
+
+// [core::slice::index::Range::get_mut]: backward function 0
+let core_slice_index_RangeUsize_get_mut_back
+ (t : Type0) :
+ core_ops_range_Range usize → slice t → option (slice t) → result (slice t) =
+ admit () // TODO
+
+// [core::slice::index::Range::get_unchecked]: forward function
+let core_slice_index_RangeUsize_get_unchecked
+ (t : Type0) :
+ core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
+ // Don't know what the model should be - for now we always fail to make
+ // sure code which uses it fails
+ fun _ _ -> Fail Failure
+
+// [core::slice::index::Range::get_unchecked_mut]: forward function
+let core_slice_index_RangeUsize_get_unchecked_mut
+ (t : Type0) :
+ core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
+ // Don't know what the model should be - for now we always fail to make
+ // sure code which uses it fails
+ fun _ _ -> Fail Failure
+
+// [core::slice::index::Range::index]: forward function
+let core_slice_index_RangeUsize_index
+ (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
+ admit () // TODO
+
+// [core::slice::index::Range::index_mut]: forward function
+let core_slice_index_RangeUsize_index_mut
+ (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
+ admit () // TODO
+
+// [core::slice::index::Range::index_mut]: backward function 0
+let core_slice_index_RangeUsize_index_mut_back
+ (t : Type0) : core_ops_range_Range usize → slice t → slice t → result (slice t) =
+ admit () // TODO
+
+// [core::slice::index::[T]::index_mut]: forward function
+let core_slice_index_Slice_index_mut
+ (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
+ slice t → idx → result inst.output =
+ admit () //
+
+// [core::slice::index::[T]::index_mut]: backward function 0
+let core_slice_index_Slice_index_mut_back
+ (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
+ slice t → idx → inst.output → result (slice t) =
+ admit () // TODO
+
+// [core::array::[T; N]::index]: forward function
+let core_array_Array_index
+ (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
+ (a : array t n) (i : idx) : result inst.output =
+ admit () // TODO
+
+// [core::array::[T; N]::index_mut]: forward function
+let core_array_Array_index_mut
+ (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
+ (a : array t n) (i : idx) : result inst.indexInst.output =
+ admit () // TODO
+
+// [core::array::[T; N]::index_mut]: backward function 0
+let core_array_Array_index_mut_back
+ (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
+ (a : array t n) (i : idx) (x : inst.indexInst.output) : result (array t n) =
+ admit () // TODO
+
+// Trait implementation: [core::slice::index::private_slice_index::Range]
+let core_slice_index_private_slice_index_SealedRangeUsizeInst
+ : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
+
+// Trait implementation: [core::slice::index::Range]
+let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
+ core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
+ sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
+ output = slice t;
+ get = core_slice_index_RangeUsize_get t;
+ get_mut = core_slice_index_RangeUsize_get_mut t;
+ get_mut_back = core_slice_index_RangeUsize_get_mut_back t;
+ get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
+ get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
+ index = core_slice_index_RangeUsize_index t;
+ index_mut = core_slice_index_RangeUsize_index_mut t;
+ index_mut_back = core_slice_index_RangeUsize_index_mut_back t;
+}
+
+// Trait implementation: [core::slice::index::[T]]
+let core_ops_index_IndexSliceTIInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_Index (slice t) idx = {
+ output = inst.output;
+ index = core_slice_index_Slice_index t idx inst;
+}
+
+// Trait implementation: [core::slice::index::[T]]
+let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_IndexMut (slice t) idx = {
+ indexInst = core_ops_index_IndexSliceTIInst t idx inst;
+ index_mut = core_slice_index_Slice_index_mut t idx inst;
+ index_mut_back = core_slice_index_Slice_index_mut_back t idx inst;
+}
+
+// Trait implementation: [core::array::[T; N]]
+let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
+ (inst : core_ops_index_Index (slice t) idx) :
+ core_ops_index_Index (array t n) idx = {
+ output = inst.output;
+ index = core_array_Array_index t idx n inst;
+}
+
+// Trait implementation: [core::array::[T; N]]
+let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
+ (inst : core_ops_index_IndexMut (slice t) idx) :
+ core_ops_index_IndexMut (array t n) idx = {
+ indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
+ index_mut = core_array_Array_index_mut t idx n inst;
+ index_mut_back = core_array_Array_index_mut_back t idx n inst;
+}
+
+// [core::slice::index::usize::get]: forward function
+let core_slice_index_usize_get
+ (t : Type0) : usize → slice t → result (option t) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_mut]: forward function
+let core_slice_index_usize_get_mut
+ (t : Type0) : usize → slice t → result (option t) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_mut]: backward function 0
+let core_slice_index_usize_get_mut_back
+ (t : Type0) : usize → slice t → option t → result (slice t) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_unchecked]: forward function
+let core_slice_index_usize_get_unchecked
+ (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_unchecked_mut]: forward function
+let core_slice_index_usize_get_unchecked_mut
+ (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
+ admit () // TODO
+
+// [core::slice::index::usize::index]: forward function
+let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
+ admit () // TODO
+
+// [core::slice::index::usize::index_mut]: forward function
+let core_slice_index_usize_index_mut (t : Type0) : usize → slice t → result t =
+ admit () // TODO
+
+// [core::slice::index::usize::index_mut]: backward function 0
+let core_slice_index_usize_index_mut_back
+ (t : Type0) : usize → slice t → t → result (slice t) =
+ admit () // TODO
+
+// Trait implementation: [core::slice::index::private_slice_index::usize]
+let core_slice_index_private_slice_index_SealedUsizeInst
+ : core_slice_index_private_slice_index_Sealed usize = ()
+
+// Trait implementation: [core::slice::index::usize]
+let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
+ core_slice_index_SliceIndex usize (slice t) = {
+ sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
+ output = t;
+ get = core_slice_index_usize_get t;
+ get_mut = core_slice_index_usize_get_mut t;
+ get_mut_back = core_slice_index_usize_get_mut_back t;
+ get_unchecked = core_slice_index_usize_get_unchecked t;
+ get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
+ index = core_slice_index_usize_index t;
+ index_mut = core_slice_index_usize_index_mut t;
+ index_mut_back = core_slice_index_usize_index_mut_back t;
+}
+
+// [alloc::vec::Vec::index]: forward function
+let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (self : alloc_vec_Vec t) (i : idx) : result inst.output =
+ admit () // TODO
+
+// [alloc::vec::Vec::index_mut]: forward function
+let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (self : alloc_vec_Vec t) (i : idx) : result inst.output =
+ admit () // TODO
+
+// [alloc::vec::Vec::index_mut]: backward function 0
+let alloc_vec_Vec_index_mut_back
+ (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (self : alloc_vec_Vec t) (i : idx) (x : inst.output) : result (alloc_vec_Vec t) =
+ admit () // TODO
+
+// Trait implementation: [alloc::vec::Vec]
+let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_Index (alloc_vec_Vec t) idx = {
+ output = inst.output;
+ index = alloc_vec_Vec_index t idx inst;
+}
+
+// Trait implementation: [alloc::vec::Vec]
+let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
+ indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
+ index_mut = alloc_vec_Vec_index_mut t idx inst;
+ index_mut_back = alloc_vec_Vec_index_mut_back t idx inst;
+}
+
+(*** Theorems *)
+
+let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
+ Lemma (
+ alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
+ alloc_vec_Vec_index_usize v i)
+ [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
+ =
+ admit()
+
+let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
+ Lemma (
+ alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
+ alloc_vec_Vec_index_usize v i)
+ [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
+ =
+ admit()
+
+let alloc_vec_Vec_index_mut_back_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) :
+ Lemma (
+ alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x ==
+ alloc_vec_Vec_update_usize v i x)
+ [SMTPat (alloc_vec_Vec_index_mut_back a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i x)]
+ =
+ admit()
diff --git a/tests/fstar/demo/Demo.fst b/tests/fstar/demo/Demo.fst
new file mode 100644
index 00000000..f9082979
--- /dev/null
+++ b/tests/fstar/demo/Demo.fst
@@ -0,0 +1,138 @@
+(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
+(** [demo] *)
+module Demo
+open Primitives
+
+#set-options "--z3rlimit 50 --fuel 1 --ifuel 1"
+
+(** [demo::choose]:
+ Source: 'src/demo.rs', lines 5:0-5:70 *)
+let choose
+ (t : Type0) (b : bool) (x : t) (y : t) : result (t & (t -> result (t & t))) =
+ if b
+ then let back_'a = fun ret -> Return (ret, y) in Return (x, back_'a)
+ else let back_'a = fun ret -> Return (x, ret) in Return (y, back_'a)
+
+(** [demo::mul2_add1]:
+ Source: 'src/demo.rs', lines 13:0-13:31 *)
+let mul2_add1 (x : u32) : result u32 =
+ let* i = u32_add x x in u32_add i 1
+
+(** [demo::use_mul2_add1]:
+ Source: 'src/demo.rs', lines 17:0-17:43 *)
+let use_mul2_add1 (x : u32) (y : u32) : result u32 =
+ let* i = mul2_add1 x in u32_add i y
+
+(** [demo::incr]:
+ Source: 'src/demo.rs', lines 21:0-21:31 *)
+let incr (x : u32) : result u32 =
+ u32_add x 1
+
+(** [demo::CList]
+ Source: 'src/demo.rs', lines 27:0-27:17 *)
+type cList_t (t : Type0) =
+| CList_CCons : t -> cList_t t -> cList_t t
+| CList_CNil : cList_t t
+
+(** [demo::list_nth]:
+ Source: 'src/demo.rs', lines 32:0-32:56 *)
+let rec list_nth (t : Type0) (n : nat) (l : cList_t t) (i : u32) : result t =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0 then Return x else let* i1 = u32_sub i 1 in list_nth t n1 tl i1
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut]:
+ Source: 'src/demo.rs', lines 47:0-47:68 *)
+let rec list_nth_mut
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) :
+ result (t & (t -> result (cList_t t)))
+ =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0
+ then
+ let back_'a = fun ret -> Return (CList_CCons ret tl) in
+ Return (x, back_'a)
+ else
+ let* i1 = u32_sub i 1 in
+ let* (x1, list_nth_mut_back) = list_nth_mut t n1 tl i1 in
+ let back_'a =
+ fun ret ->
+ let* tl1 = list_nth_mut_back ret in Return (CList_CCons x tl1) in
+ Return (x1, back_'a)
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut1]: loop 0:
+ Source: 'src/demo.rs', lines 62:0-71:1 *)
+let rec list_nth_mut1_loop
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) :
+ result (t & (t -> result (cList_t t)))
+ =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ begin match l with
+ | CList_CCons x tl ->
+ if i = 0
+ then
+ let back_'a = fun ret -> Return (CList_CCons ret tl) in
+ Return (x, back_'a)
+ else
+ let* i1 = u32_sub i 1 in
+ let* (x1, back_'a) = list_nth_mut1_loop t n1 tl i1 in
+ let back_'a1 =
+ fun ret -> let* tl1 = back_'a ret in Return (CList_CCons x tl1) in
+ Return (x1, back_'a1)
+ | CList_CNil -> Fail Failure
+ end
+
+(** [demo::list_nth_mut1]:
+ Source: 'src/demo.rs', lines 62:0-62:77 *)
+let list_nth_mut1
+ (t : Type0) (n : nat) (l : cList_t t) (i : u32) :
+ result (t & (t -> result (cList_t t)))
+ =
+ let* (x, back_'a) = list_nth_mut1_loop t n l i in Return (x, back_'a)
+
+(** [demo::i32_id]:
+ Source: 'src/demo.rs', lines 73:0-73:28 *)
+let rec i32_id (n : nat) (i : i32) : result i32 =
+ if is_zero n
+ then Fail OutOfFuel
+ else
+ let n1 = decrease n in
+ if i = 0
+ then Return 0
+ else let* i1 = i32_sub i 1 in let* i2 = i32_id n1 i1 in i32_add i2 1
+
+(** Trait declaration: [demo::Counter]
+ Source: 'src/demo.rs', lines 83:0-83:17 *)
+noeq type counter_t (self : Type0) = { incr : self -> result (usize & self); }
+
+(** [demo::{usize}::incr]:
+ Source: 'src/demo.rs', lines 88:4-88:31 *)
+let usize_incr (self : usize) : result (usize & usize) =
+ let* self1 = usize_add self 1 in Return (self, self1)
+
+(** Trait implementation: [demo::{usize}]
+ Source: 'src/demo.rs', lines 87:0-87:22 *)
+let demo_CounterUsizeInst : counter_t usize = { incr = usize_incr; }
+
+(** [demo::use_counter]:
+ Source: 'src/demo.rs', lines 95:0-95:59 *)
+let use_counter
+ (t : Type0) (counterTInst : counter_t t) (cnt : t) : result (usize & t) =
+ counterTInst.incr cnt
+
diff --git a/tests/fstar/demo/Makefile b/tests/fstar/demo/Makefile
new file mode 100644
index 00000000..fa7d1f36
--- /dev/null
+++ b/tests/fstar/demo/Makefile
@@ -0,0 +1,49 @@
+# This file was automatically generated - modify ../Makefile.template instead
+INCLUDE_DIRS = .
+
+FSTAR_INCLUDES = $(addprefix --include ,$(INCLUDE_DIRS))
+
+FSTAR_HINTS ?= --use_hints --use_hint_hashes --record_hints
+
+FSTAR_OPTIONS = $(FSTAR_HINTS) \
+ --cache_checked_modules $(FSTAR_INCLUDES) --cmi \
+ --warn_error '+241@247+285-274' \
+
+FSTAR_EXE ?= fstar.exe
+FSTAR_NO_FLAGS = $(FSTAR_EXE) --already_cached 'Prims FStar LowStar Steel' --odir obj --cache_dir obj
+
+FSTAR = $(FSTAR_NO_FLAGS) $(FSTAR_OPTIONS)
+
+# The F* roots are used to compute the dependency graph, and generate the .depend file
+FSTAR_ROOTS ?= $(wildcard *.fst *.fsti)
+
+# Build all the files
+all: $(addprefix obj/,$(addsuffix .checked,$(FSTAR_ROOTS)))
+
+# This is the right way to ensure the .depend file always gets re-built.
+ifeq (,$(filter %-in,$(MAKECMDGOALS)))
+ifndef NODEPEND
+ifndef MAKE_RESTARTS
+.depend: .FORCE
+ $(FSTAR_NO_FLAGS) --dep full $(notdir $(FSTAR_ROOTS)) > $@
+
+.PHONY: .FORCE
+.FORCE:
+endif
+endif
+
+include .depend
+endif
+
+# For the interactive mode
+%.fst-in %.fsti-in:
+ @echo $(FSTAR_OPTIONS)
+
+# Generete the .checked files in batch mode
+%.checked:
+ $(FSTAR) $(FSTAR_OPTIONS) $< && \
+ touch -c $@
+
+.PHONY: clean
+clean:
+ rm -f obj/*
diff --git a/tests/fstar/demo/Primitives.fst b/tests/fstar/demo/Primitives.fst
new file mode 100644
index 00000000..fca80829
--- /dev/null
+++ b/tests/fstar/demo/Primitives.fst
@@ -0,0 +1,848 @@
+/// This file lists primitive and assumed functions and types
+module Primitives
+open FStar.Mul
+open FStar.List.Tot
+
+#set-options "--z3rlimit 15 --fuel 0 --ifuel 1"
+
+(*** Utilities *)
+val list_update (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a) :
+ ls':list a{
+ length ls' = length ls /\
+ index ls' i == x
+ }
+#push-options "--fuel 1"
+let rec list_update #a ls i x =
+ match ls with
+ | x' :: ls -> if i = 0 then x :: ls else x' :: list_update ls (i-1) x
+#pop-options
+
+(*** Result *)
+type error : Type0 =
+| Failure
+| OutOfFuel
+
+type result (a : Type0) : Type0 =
+| Return : v:a -> result a
+| Fail : e:error -> result a
+
+// Monadic return operator
+unfold let return (#a : Type0) (x : a) : result a = Return x
+
+// Monadic bind operator.
+// Allows to use the notation:
+// ```
+// let* x = y in
+// ...
+// ```
+unfold let (let*) (#a #b : Type0) (m: result a)
+ (f: (x:a) -> Pure (result b) (requires (m == Return x)) (ensures fun _ -> True)) :
+ result b =
+ match m with
+ | Return x -> f x
+ | Fail e -> Fail e
+
+// Monadic assert(...)
+let massert (b:bool) : result unit = if b then Return () else Fail Failure
+
+// Normalize and unwrap a successful result (used for globals).
+let eval_global (#a : Type0) (x : result a{Return? (normalize_term x)}) : a = Return?.v x
+
+(*** Misc *)
+type char = FStar.Char.char
+type string = string
+
+let is_zero (n: nat) : bool = n = 0
+let decrease (n: nat{n > 0}) : nat = n - 1
+
+let core_mem_replace (a : Type0) (x : a) (y : a) : a & a = (x, x)
+
+// We don't really use raw pointers for now
+type mut_raw_ptr (t : Type0) = { v : t }
+type const_raw_ptr (t : Type0) = { v : t }
+
+(*** Scalars *)
+/// Rem.: most of the following code was partially generated
+
+assume val size_numbits : pos
+
+// TODO: we could use FStar.Int.int_t and FStar.UInt.int_t
+
+let isize_min : int = -9223372036854775808 // TODO: should be opaque
+let isize_max : int = 9223372036854775807 // TODO: should be opaque
+let i8_min : int = -128
+let i8_max : int = 127
+let i16_min : int = -32768
+let i16_max : int = 32767
+let i32_min : int = -2147483648
+let i32_max : int = 2147483647
+let i64_min : int = -9223372036854775808
+let i64_max : int = 9223372036854775807
+let i128_min : int = -170141183460469231731687303715884105728
+let i128_max : int = 170141183460469231731687303715884105727
+let usize_min : int = 0
+let usize_max : int = 4294967295 // TODO: should be opaque
+let u8_min : int = 0
+let u8_max : int = 255
+let u16_min : int = 0
+let u16_max : int = 65535
+let u32_min : int = 0
+let u32_max : int = 4294967295
+let u64_min : int = 0
+let u64_max : int = 18446744073709551615
+let u128_min : int = 0
+let u128_max : int = 340282366920938463463374607431768211455
+
+type scalar_ty =
+| Isize
+| I8
+| I16
+| I32
+| I64
+| I128
+| Usize
+| U8
+| U16
+| U32
+| U64
+| U128
+
+let is_unsigned = function
+ | Isize | I8 | I16 | I32 | I64 | I128 -> false
+ | Usize | U8 | U16 | U32 | U64 | U128 -> true
+
+let scalar_min (ty : scalar_ty) : int =
+ match ty with
+ | Isize -> isize_min
+ | I8 -> i8_min
+ | I16 -> i16_min
+ | I32 -> i32_min
+ | I64 -> i64_min
+ | I128 -> i128_min
+ | Usize -> usize_min
+ | U8 -> u8_min
+ | U16 -> u16_min
+ | U32 -> u32_min
+ | U64 -> u64_min
+ | U128 -> u128_min
+
+let scalar_max (ty : scalar_ty) : int =
+ match ty with
+ | Isize -> isize_max
+ | I8 -> i8_max
+ | I16 -> i16_max
+ | I32 -> i32_max
+ | I64 -> i64_max
+ | I128 -> i128_max
+ | Usize -> usize_max
+ | U8 -> u8_max
+ | U16 -> u16_max
+ | U32 -> u32_max
+ | U64 -> u64_max
+ | U128 -> u128_max
+
+type scalar (ty : scalar_ty) : eqtype = x:int{scalar_min ty <= x && x <= scalar_max ty}
+
+let mk_scalar (ty : scalar_ty) (x : int) : result (scalar ty) =
+ if scalar_min ty <= x && scalar_max ty >= x then Return x else Fail Failure
+
+let scalar_neg (#ty : scalar_ty) (x : scalar ty) : result (scalar ty) = mk_scalar ty (-x)
+
+let scalar_div (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ if y <> 0 then mk_scalar ty (x / y) else Fail Failure
+
+/// The remainder operation
+let int_rem (x : int) (y : int{y <> 0}) : int =
+ if x >= 0 then (x % y) else -(x % y)
+
+(* Checking consistency with Rust *)
+let _ = assert_norm(int_rem 1 2 = 1)
+let _ = assert_norm(int_rem (-1) 2 = -1)
+let _ = assert_norm(int_rem 1 (-2) = 1)
+let _ = assert_norm(int_rem (-1) (-2) = -1)
+
+let scalar_rem (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ if y <> 0 then mk_scalar ty (int_rem x y) else Fail Failure
+
+let scalar_add (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x + y)
+
+let scalar_sub (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x - y)
+
+let scalar_mul (#ty : scalar_ty) (x : scalar ty) (y : scalar ty) : result (scalar ty) =
+ mk_scalar ty (x * y)
+
+let scalar_xor (#ty : scalar_ty)
+ (x : scalar ty) (y : scalar ty) : scalar ty =
+ match ty with
+ | U8 -> FStar.UInt.logxor #8 x y
+ | U16 -> FStar.UInt.logxor #16 x y
+ | U32 -> FStar.UInt.logxor #32 x y
+ | U64 -> FStar.UInt.logxor #64 x y
+ | U128 -> FStar.UInt.logxor #128 x y
+ | Usize -> admit() // TODO
+ | I8 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 8);
+ normalize_spec (scalar I8);
+ FStar.Int.logxor #8 x y
+ | I16 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 16);
+ normalize_spec (scalar I16);
+ FStar.Int.logxor #16 x y
+ | I32 -> FStar.Int.logxor #32 x y
+ | I64 -> FStar.Int.logxor #64 x y
+ | I128 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 128);
+ normalize_spec (scalar I128);
+ FStar.Int.logxor #128 x y
+ | Isize -> admit() // TODO
+
+let scalar_or (#ty : scalar_ty)
+ (x : scalar ty) (y : scalar ty) : scalar ty =
+ match ty with
+ | U8 -> FStar.UInt.logor #8 x y
+ | U16 -> FStar.UInt.logor #16 x y
+ | U32 -> FStar.UInt.logor #32 x y
+ | U64 -> FStar.UInt.logor #64 x y
+ | U128 -> FStar.UInt.logor #128 x y
+ | Usize -> admit() // TODO
+ | I8 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 8);
+ normalize_spec (scalar I8);
+ FStar.Int.logor #8 x y
+ | I16 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 16);
+ normalize_spec (scalar I16);
+ FStar.Int.logor #16 x y
+ | I32 -> FStar.Int.logor #32 x y
+ | I64 -> FStar.Int.logor #64 x y
+ | I128 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 128);
+ normalize_spec (scalar I128);
+ FStar.Int.logor #128 x y
+ | Isize -> admit() // TODO
+
+let scalar_and (#ty : scalar_ty)
+ (x : scalar ty) (y : scalar ty) : scalar ty =
+ match ty with
+ | U8 -> FStar.UInt.logand #8 x y
+ | U16 -> FStar.UInt.logand #16 x y
+ | U32 -> FStar.UInt.logand #32 x y
+ | U64 -> FStar.UInt.logand #64 x y
+ | U128 -> FStar.UInt.logand #128 x y
+ | Usize -> admit() // TODO
+ | I8 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 8);
+ normalize_spec (scalar I8);
+ FStar.Int.logand #8 x y
+ | I16 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 16);
+ normalize_spec (scalar I16);
+ FStar.Int.logand #16 x y
+ | I32 -> FStar.Int.logand #32 x y
+ | I64 -> FStar.Int.logand #64 x y
+ | I128 ->
+ // Encoding issues...
+ normalize_spec (FStar.Int.int_t 128);
+ normalize_spec (scalar I128);
+ FStar.Int.logand #128 x y
+ | Isize -> admit() // TODO
+
+// Shift left
+let scalar_shl (#ty0 #ty1 : scalar_ty)
+ (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
+ admit()
+
+// Shift right
+let scalar_shr (#ty0 #ty1 : scalar_ty)
+ (x : scalar ty0) (y : scalar ty1) : result (scalar ty0) =
+ admit()
+
+(** Cast an integer from a [src_ty] to a [tgt_ty] *)
+// TODO: check the semantics of casts in Rust
+let scalar_cast (src_ty : scalar_ty) (tgt_ty : scalar_ty) (x : scalar src_ty) : result (scalar tgt_ty) =
+ mk_scalar tgt_ty x
+
+// This can't fail, but for now we make all casts faillible (easier for the translation)
+let scalar_cast_bool (tgt_ty : scalar_ty) (x : bool) : result (scalar tgt_ty) =
+ mk_scalar tgt_ty (if x then 1 else 0)
+
+/// The scalar types
+type isize : eqtype = scalar Isize
+type i8 : eqtype = scalar I8
+type i16 : eqtype = scalar I16
+type i32 : eqtype = scalar I32
+type i64 : eqtype = scalar I64
+type i128 : eqtype = scalar I128
+type usize : eqtype = scalar Usize
+type u8 : eqtype = scalar U8
+type u16 : eqtype = scalar U16
+type u32 : eqtype = scalar U32
+type u64 : eqtype = scalar U64
+type u128 : eqtype = scalar U128
+
+
+let core_isize_min : isize = isize_min
+let core_isize_max : isize = isize_max
+let core_i8_min : i8 = i8_min
+let core_i8_max : i8 = i8_max
+let core_i16_min : i16 = i16_min
+let core_i16_max : i16 = i16_max
+let core_i32_min : i32 = i32_min
+let core_i32_max : i32 = i32_max
+let core_i64_min : i64 = i64_min
+let core_i64_max : i64 = i64_max
+let core_i128_min : i128 = i128_min
+let core_i128_max : i128 = i128_max
+
+let core_usize_min : usize = usize_min
+let core_usize_max : usize = usize_max
+let core_u8_min : u8 = u8_min
+let core_u8_max : u8 = u8_max
+let core_u16_min : u16 = u16_min
+let core_u16_max : u16 = u16_max
+let core_u32_min : u32 = u32_min
+let core_u32_max : u32 = u32_max
+let core_u64_min : u64 = u64_min
+let core_u64_max : u64 = u64_max
+let core_u128_min : u128 = u128_min
+let core_u128_max : u128 = u128_max
+
+/// Negation
+let isize_neg = scalar_neg #Isize
+let i8_neg = scalar_neg #I8
+let i16_neg = scalar_neg #I16
+let i32_neg = scalar_neg #I32
+let i64_neg = scalar_neg #I64
+let i128_neg = scalar_neg #I128
+
+/// Division
+let isize_div = scalar_div #Isize
+let i8_div = scalar_div #I8
+let i16_div = scalar_div #I16
+let i32_div = scalar_div #I32
+let i64_div = scalar_div #I64
+let i128_div = scalar_div #I128
+let usize_div = scalar_div #Usize
+let u8_div = scalar_div #U8
+let u16_div = scalar_div #U16
+let u32_div = scalar_div #U32
+let u64_div = scalar_div #U64
+let u128_div = scalar_div #U128
+
+/// Remainder
+let isize_rem = scalar_rem #Isize
+let i8_rem = scalar_rem #I8
+let i16_rem = scalar_rem #I16
+let i32_rem = scalar_rem #I32
+let i64_rem = scalar_rem #I64
+let i128_rem = scalar_rem #I128
+let usize_rem = scalar_rem #Usize
+let u8_rem = scalar_rem #U8
+let u16_rem = scalar_rem #U16
+let u32_rem = scalar_rem #U32
+let u64_rem = scalar_rem #U64
+let u128_rem = scalar_rem #U128
+
+/// Addition
+let isize_add = scalar_add #Isize
+let i8_add = scalar_add #I8
+let i16_add = scalar_add #I16
+let i32_add = scalar_add #I32
+let i64_add = scalar_add #I64
+let i128_add = scalar_add #I128
+let usize_add = scalar_add #Usize
+let u8_add = scalar_add #U8
+let u16_add = scalar_add #U16
+let u32_add = scalar_add #U32
+let u64_add = scalar_add #U64
+let u128_add = scalar_add #U128
+
+/// Subtraction
+let isize_sub = scalar_sub #Isize
+let i8_sub = scalar_sub #I8
+let i16_sub = scalar_sub #I16
+let i32_sub = scalar_sub #I32
+let i64_sub = scalar_sub #I64
+let i128_sub = scalar_sub #I128
+let usize_sub = scalar_sub #Usize
+let u8_sub = scalar_sub #U8
+let u16_sub = scalar_sub #U16
+let u32_sub = scalar_sub #U32
+let u64_sub = scalar_sub #U64
+let u128_sub = scalar_sub #U128
+
+/// Multiplication
+let isize_mul = scalar_mul #Isize
+let i8_mul = scalar_mul #I8
+let i16_mul = scalar_mul #I16
+let i32_mul = scalar_mul #I32
+let i64_mul = scalar_mul #I64
+let i128_mul = scalar_mul #I128
+let usize_mul = scalar_mul #Usize
+let u8_mul = scalar_mul #U8
+let u16_mul = scalar_mul #U16
+let u32_mul = scalar_mul #U32
+let u64_mul = scalar_mul #U64
+let u128_mul = scalar_mul #U128
+
+/// Xor
+let u8_xor = scalar_xor #U8
+let u16_xor = scalar_xor #U16
+let u32_xor = scalar_xor #U32
+let u64_xor = scalar_xor #U64
+let u128_xor = scalar_xor #U128
+let usize_xor = scalar_xor #Usize
+let i8_xor = scalar_xor #I8
+let i16_xor = scalar_xor #I16
+let i32_xor = scalar_xor #I32
+let i64_xor = scalar_xor #I64
+let i128_xor = scalar_xor #I128
+let isize_xor = scalar_xor #Isize
+
+/// Or
+let u8_or = scalar_or #U8
+let u16_or = scalar_or #U16
+let u32_or = scalar_or #U32
+let u64_or = scalar_or #U64
+let u128_or = scalar_or #U128
+let usize_or = scalar_or #Usize
+let i8_or = scalar_or #I8
+let i16_or = scalar_or #I16
+let i32_or = scalar_or #I32
+let i64_or = scalar_or #I64
+let i128_or = scalar_or #I128
+let isize_or = scalar_or #Isize
+
+/// And
+let u8_and = scalar_and #U8
+let u16_and = scalar_and #U16
+let u32_and = scalar_and #U32
+let u64_and = scalar_and #U64
+let u128_and = scalar_and #U128
+let usize_and = scalar_and #Usize
+let i8_and = scalar_and #I8
+let i16_and = scalar_and #I16
+let i32_and = scalar_and #I32
+let i64_and = scalar_and #I64
+let i128_and = scalar_and #I128
+let isize_and = scalar_and #Isize
+
+/// Shift left
+let u8_shl #ty = scalar_shl #U8 #ty
+let u16_shl #ty = scalar_shl #U16 #ty
+let u32_shl #ty = scalar_shl #U32 #ty
+let u64_shl #ty = scalar_shl #U64 #ty
+let u128_shl #ty = scalar_shl #U128 #ty
+let usize_shl #ty = scalar_shl #Usize #ty
+let i8_shl #ty = scalar_shl #I8 #ty
+let i16_shl #ty = scalar_shl #I16 #ty
+let i32_shl #ty = scalar_shl #I32 #ty
+let i64_shl #ty = scalar_shl #I64 #ty
+let i128_shl #ty = scalar_shl #I128 #ty
+let isize_shl #ty = scalar_shl #Isize #ty
+
+/// Shift right
+let u8_shr #ty = scalar_shr #U8 #ty
+let u16_shr #ty = scalar_shr #U16 #ty
+let u32_shr #ty = scalar_shr #U32 #ty
+let u64_shr #ty = scalar_shr #U64 #ty
+let u128_shr #ty = scalar_shr #U128 #ty
+let usize_shr #ty = scalar_shr #Usize #ty
+let i8_shr #ty = scalar_shr #I8 #ty
+let i16_shr #ty = scalar_shr #I16 #ty
+let i32_shr #ty = scalar_shr #I32 #ty
+let i64_shr #ty = scalar_shr #I64 #ty
+let i128_shr #ty = scalar_shr #I128 #ty
+let isize_shr #ty = scalar_shr #Isize #ty
+
+(*** core::ops *)
+
+// Trait declaration: [core::ops::index::Index]
+noeq type core_ops_index_Index (self idx : Type0) = {
+ output : Type0;
+ index : self → idx → result output
+}
+
+// Trait declaration: [core::ops::index::IndexMut]
+noeq type core_ops_index_IndexMut (self idx : Type0) = {
+ indexInst : core_ops_index_Index self idx;
+ index_mut : self → idx → result (indexInst.output & (indexInst.output → result self));
+}
+
+// Trait declaration [core::ops::deref::Deref]
+noeq type core_ops_deref_Deref (self : Type0) = {
+ target : Type0;
+ deref : self → result target;
+}
+
+// Trait declaration [core::ops::deref::DerefMut]
+noeq type core_ops_deref_DerefMut (self : Type0) = {
+ derefInst : core_ops_deref_Deref self;
+ deref_mut : self → result (derefInst.target & (derefInst.target → result self));
+}
+
+type core_ops_range_Range (a : Type0) = {
+ start : a;
+ end_ : a;
+}
+
+(*** [alloc] *)
+
+let alloc_boxed_Box_deref (t : Type0) (x : t) : result t = Return x
+let alloc_boxed_Box_deref_mut (t : Type0) (x : t) : result (t & (t -> result t)) =
+ Return (x, (fun x -> Return x))
+
+// Trait instance
+let alloc_boxed_Box_coreopsDerefInst (self : Type0) : core_ops_deref_Deref self = {
+ target = self;
+ deref = alloc_boxed_Box_deref self;
+}
+
+// Trait instance
+let alloc_boxed_Box_coreopsDerefMutInst (self : Type0) : core_ops_deref_DerefMut self = {
+ derefInst = alloc_boxed_Box_coreopsDerefInst self;
+ deref_mut = alloc_boxed_Box_deref_mut self;
+}
+
+(*** Array *)
+type array (a : Type0) (n : usize) = s:list a{length s = n}
+
+// We tried putting the normalize_term condition as a refinement on the list
+// but it didn't work. It works with the requires clause.
+let mk_array (a : Type0) (n : usize)
+ (l : list a) :
+ Pure (array a n)
+ (requires (normalize_term(FStar.List.Tot.length l) = n))
+ (ensures (fun _ -> True)) =
+ normalize_term_spec (FStar.List.Tot.length l);
+ l
+
+let array_index_usize (a : Type0) (n : usize) (x : array a n) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let array_update_usize (a : Type0) (n : usize) (x : array a n) (i : usize) (nx : a) :
+ result (array a n) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+let array_index_mut_usize (a : Type0) (n : usize) (x : array a n) (i : usize) :
+ result (a & (a -> result (array a n))) =
+ match array_index_usize a n x i with
+ | Fail e -> Fail e
+ | Return v ->
+ Return (v, array_update_usize a n x i)
+
+(*** Slice *)
+type slice (a : Type0) = s:list a{length s <= usize_max}
+
+let slice_len (a : Type0) (s : slice a) : usize = length s
+
+let slice_index_usize (a : Type0) (x : slice a) (i : usize) : result a =
+ if i < length x then Return (index x i)
+ else Fail Failure
+
+let slice_update_usize (a : Type0) (x : slice a) (i : usize) (nx : a) : result (slice a) =
+ if i < length x then Return (list_update x i nx)
+ else Fail Failure
+
+let slice_index_mut_usize (a : Type0) (s : slice a) (i : usize) :
+ result (a & (a -> result (slice a))) =
+ match slice_index_usize a s i with
+ | Fail e -> Fail e
+ | Return x ->
+ Return (x, slice_update_usize a s i)
+
+(*** Subslices *)
+
+let array_to_slice (a : Type0) (n : usize) (x : array a n) : result (slice a) = Return x
+let array_from_slice (a : Type0) (n : usize) (x : array a n) (s : slice a) : result (array a n) =
+ if length s = n then Return s
+ else Fail Failure
+
+let array_to_slice_mut (a : Type0) (n : usize) (x : array a n) :
+ result (slice a & (slice a -> result (array a n))) =
+ Return (x, array_from_slice a n x)
+
+// TODO: finish the definitions below (there lacks [List.drop] and [List.take] in the standard library *)
+let array_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) : result (slice a) =
+ admit()
+
+let array_update_subslice (a : Type0) (n : usize) (x : array a n) (r : core_ops_range_Range usize) (ns : slice a) : result (array a n) =
+ admit()
+
+let array_repeat (a : Type0) (n : usize) (x : a) : array a n =
+ admit()
+
+let slice_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) : result (slice a) =
+ admit()
+
+let slice_update_subslice (a : Type0) (x : slice a) (r : core_ops_range_Range usize) (ns : slice a) : result (slice a) =
+ admit()
+
+(*** Vector *)
+type alloc_vec_Vec (a : Type0) = v:list a{length v <= usize_max}
+
+let alloc_vec_Vec_new (a : Type0) : alloc_vec_Vec a = assert_norm(length #a [] == 0); []
+let alloc_vec_Vec_len (a : Type0) (v : alloc_vec_Vec a) : usize = length v
+
+// Helper
+let alloc_vec_Vec_index_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) : result a =
+ if i < length v then Return (index v i) else Fail Failure
+// Helper
+let alloc_vec_Vec_update_usize (#a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
+ if i < length v then Return (list_update v i x) else Fail Failure
+
+let alloc_vec_Vec_index_mut_usize (#a : Type0) (v: alloc_vec_Vec a) (i: usize) :
+ result (a & (a → result (alloc_vec_Vec a))) =
+ match alloc_vec_Vec_index_usize v i with
+ | Return x ->
+ Return (x, alloc_vec_Vec_update_usize v i)
+ | Fail e -> Fail e
+
+let alloc_vec_Vec_push (a : Type0) (v : alloc_vec_Vec a) (x : a) :
+ Pure (result (alloc_vec_Vec a))
+ (requires True)
+ (ensures (fun res ->
+ match res with
+ | Fail e -> e == Failure
+ | Return v' -> length v' = length v + 1)) =
+ if length v < usize_max then begin
+ (**) assert_norm(length [x] == 1);
+ (**) append_length v [x];
+ (**) assert(length (append v [x]) = length v + 1);
+ Return (append v [x])
+ end
+ else Fail Failure
+
+let alloc_vec_Vec_insert (a : Type0) (v : alloc_vec_Vec a) (i : usize) (x : a) : result (alloc_vec_Vec a) =
+ if i < length v then Return (list_update v i x) else Fail Failure
+
+// Trait declaration: [core::slice::index::private_slice_index::Sealed]
+type core_slice_index_private_slice_index_Sealed (self : Type0) = unit
+
+// Trait declaration: [core::slice::index::SliceIndex]
+noeq type core_slice_index_SliceIndex (self t : Type0) = {
+ sealedInst : core_slice_index_private_slice_index_Sealed self;
+ output : Type0;
+ get : self → t → result (option output);
+ get_mut : self → t → result (option output & (option output -> result t));
+ get_unchecked : self → const_raw_ptr t → result (const_raw_ptr output);
+ get_unchecked_mut : self → mut_raw_ptr t → result (mut_raw_ptr output);
+ index : self → t → result output;
+ index_mut : self → t → result (output & (output -> result t));
+}
+
+// [core::slice::index::[T]::index]: forward function
+let core_slice_index_Slice_index
+ (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (s : slice t) (i : idx) : result inst.output =
+ let* x = inst.get i s in
+ match x with
+ | None -> Fail Failure
+ | Some x -> Return x
+
+// [core::slice::index::Range:::get]: forward function
+let core_slice_index_RangeUsize_get (t : Type0) (i : core_ops_range_Range usize) (s : slice t) :
+ result (option (slice t)) =
+ admit () // TODO
+
+// [core::slice::index::Range::get_mut]: forward function
+let core_slice_index_RangeUsize_get_mut (t : Type0) :
+ core_ops_range_Range usize → slice t → result (option (slice t) & (option (slice t) -> result (slice t))) =
+ admit () // TODO
+
+// [core::slice::index::Range::get_unchecked]: forward function
+let core_slice_index_RangeUsize_get_unchecked
+ (t : Type0) :
+ core_ops_range_Range usize → const_raw_ptr (slice t) → result (const_raw_ptr (slice t)) =
+ // Don't know what the model should be - for now we always fail to make
+ // sure code which uses it fails
+ fun _ _ -> Fail Failure
+
+// [core::slice::index::Range::get_unchecked_mut]: forward function
+let core_slice_index_RangeUsize_get_unchecked_mut
+ (t : Type0) :
+ core_ops_range_Range usize → mut_raw_ptr (slice t) → result (mut_raw_ptr (slice t)) =
+ // Don't know what the model should be - for now we always fail to make
+ // sure code which uses it fails
+ fun _ _ -> Fail Failure
+
+// [core::slice::index::Range::index]: forward function
+let core_slice_index_RangeUsize_index
+ (t : Type0) : core_ops_range_Range usize → slice t → result (slice t) =
+ admit () // TODO
+
+// [core::slice::index::Range::index_mut]: forward function
+let core_slice_index_RangeUsize_index_mut (t : Type0) :
+ core_ops_range_Range usize → slice t → result (slice t & (slice t -> result (slice t))) =
+ admit () // TODO
+
+// [core::slice::index::[T]::index_mut]: forward function
+let core_slice_index_Slice_index_mut
+ (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t)) :
+ slice t → idx → result (inst.output & (inst.output -> result (slice t))) =
+ admit () //
+
+// [core::array::[T; N]::index]: forward function
+let core_array_Array_index
+ (t idx : Type0) (n : usize) (inst : core_ops_index_Index (slice t) idx)
+ (a : array t n) (i : idx) : result inst.output =
+ admit () // TODO
+
+// [core::array::[T; N]::index_mut]: forward function
+let core_array_Array_index_mut
+ (t idx : Type0) (n : usize) (inst : core_ops_index_IndexMut (slice t) idx)
+ (a : array t n) (i : idx) :
+ result (inst.indexInst.output & (inst.indexInst.output -> result (array t n))) =
+ admit () // TODO
+
+// Trait implementation: [core::slice::index::private_slice_index::Range]
+let core_slice_index_private_slice_index_SealedRangeUsizeInst
+ : core_slice_index_private_slice_index_Sealed (core_ops_range_Range usize) = ()
+
+// Trait implementation: [core::slice::index::Range]
+let core_slice_index_SliceIndexRangeUsizeSliceTInst (t : Type0) :
+ core_slice_index_SliceIndex (core_ops_range_Range usize) (slice t) = {
+ sealedInst = core_slice_index_private_slice_index_SealedRangeUsizeInst;
+ output = slice t;
+ get = core_slice_index_RangeUsize_get t;
+ get_mut = core_slice_index_RangeUsize_get_mut t;
+ get_unchecked = core_slice_index_RangeUsize_get_unchecked t;
+ get_unchecked_mut = core_slice_index_RangeUsize_get_unchecked_mut t;
+ index = core_slice_index_RangeUsize_index t;
+ index_mut = core_slice_index_RangeUsize_index_mut t;
+}
+
+// Trait implementation: [core::slice::index::[T]]
+let core_ops_index_IndexSliceTIInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_Index (slice t) idx = {
+ output = inst.output;
+ index = core_slice_index_Slice_index t idx inst;
+}
+
+// Trait implementation: [core::slice::index::[T]]
+let core_ops_index_IndexMutSliceTIInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_IndexMut (slice t) idx = {
+ indexInst = core_ops_index_IndexSliceTIInst t idx inst;
+ index_mut = core_slice_index_Slice_index_mut t idx inst;
+}
+
+// Trait implementation: [core::array::[T; N]]
+let core_ops_index_IndexArrayInst (t idx : Type0) (n : usize)
+ (inst : core_ops_index_Index (slice t) idx) :
+ core_ops_index_Index (array t n) idx = {
+ output = inst.output;
+ index = core_array_Array_index t idx n inst;
+}
+
+// Trait implementation: [core::array::[T; N]]
+let core_ops_index_IndexMutArrayIInst (t idx : Type0) (n : usize)
+ (inst : core_ops_index_IndexMut (slice t) idx) :
+ core_ops_index_IndexMut (array t n) idx = {
+ indexInst = core_ops_index_IndexArrayInst t idx n inst.indexInst;
+ index_mut = core_array_Array_index_mut t idx n inst;
+}
+
+// [core::slice::index::usize::get]: forward function
+let core_slice_index_usize_get
+ (t : Type0) : usize → slice t → result (option t) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_mut]: forward function
+let core_slice_index_usize_get_mut (t : Type0) :
+ usize → slice t → result (option t & (option t -> result (slice t))) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_unchecked]: forward function
+let core_slice_index_usize_get_unchecked
+ (t : Type0) : usize → const_raw_ptr (slice t) → result (const_raw_ptr t) =
+ admit () // TODO
+
+// [core::slice::index::usize::get_unchecked_mut]: forward function
+let core_slice_index_usize_get_unchecked_mut
+ (t : Type0) : usize → mut_raw_ptr (slice t) → result (mut_raw_ptr t) =
+ admit () // TODO
+
+// [core::slice::index::usize::index]: forward function
+let core_slice_index_usize_index (t : Type0) : usize → slice t → result t =
+ admit () // TODO
+
+// [core::slice::index::usize::index_mut]: forward function
+let core_slice_index_usize_index_mut (t : Type0) :
+ usize → slice t → result (t & (t -> result (slice t))) =
+ admit () // TODO
+
+// Trait implementation: [core::slice::index::private_slice_index::usize]
+let core_slice_index_private_slice_index_SealedUsizeInst
+ : core_slice_index_private_slice_index_Sealed usize = ()
+
+// Trait implementation: [core::slice::index::usize]
+let core_slice_index_SliceIndexUsizeSliceTInst (t : Type0) :
+ core_slice_index_SliceIndex usize (slice t) = {
+ sealedInst = core_slice_index_private_slice_index_SealedUsizeInst;
+ output = t;
+ get = core_slice_index_usize_get t;
+ get_mut = core_slice_index_usize_get_mut t;
+ get_unchecked = core_slice_index_usize_get_unchecked t;
+ get_unchecked_mut = core_slice_index_usize_get_unchecked_mut t;
+ index = core_slice_index_usize_index t;
+ index_mut = core_slice_index_usize_index_mut t;
+}
+
+// [alloc::vec::Vec::index]: forward function
+let alloc_vec_Vec_index (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (self : alloc_vec_Vec t) (i : idx) : result inst.output =
+ admit () // TODO
+
+// [alloc::vec::Vec::index_mut]: forward function
+let alloc_vec_Vec_index_mut (t idx : Type0) (inst : core_slice_index_SliceIndex idx (slice t))
+ (self : alloc_vec_Vec t) (i : idx) :
+ result (inst.output & (inst.output -> result (alloc_vec_Vec t))) =
+ admit () // TODO
+
+// Trait implementation: [alloc::vec::Vec]
+let alloc_vec_Vec_coreopsindexIndexInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_Index (alloc_vec_Vec t) idx = {
+ output = inst.output;
+ index = alloc_vec_Vec_index t idx inst;
+}
+
+// Trait implementation: [alloc::vec::Vec]
+let alloc_vec_Vec_coreopsindexIndexMutInst (t idx : Type0)
+ (inst : core_slice_index_SliceIndex idx (slice t)) :
+ core_ops_index_IndexMut (alloc_vec_Vec t) idx = {
+ indexInst = alloc_vec_Vec_coreopsindexIndexInst t idx inst;
+ index_mut = alloc_vec_Vec_index_mut t idx inst;
+}
+
+(*** Theorems *)
+
+let alloc_vec_Vec_index_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
+ Lemma (
+ alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
+ alloc_vec_Vec_index_usize v i)
+ [SMTPat (alloc_vec_Vec_index a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
+ =
+ admit()
+
+let alloc_vec_Vec_index_mut_eq (#a : Type0) (v : alloc_vec_Vec a) (i : usize) :
+ Lemma (
+ alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i ==
+ alloc_vec_Vec_index_mut_usize v i)
+ [SMTPat (alloc_vec_Vec_index_mut a usize (core_slice_index_SliceIndexUsizeSliceTInst a) v i)]
+ =
+ admit()
diff --git a/tests/lean/Demo.lean b/tests/lean/Demo.lean
new file mode 100644
index 00000000..79cd1323
--- /dev/null
+++ b/tests/lean/Demo.lean
@@ -0,0 +1 @@
+import Demo.Properties
diff --git a/tests/lean/Demo/Demo.lean b/tests/lean/Demo/Demo.lean
new file mode 100644
index 00000000..01818585
--- /dev/null
+++ b/tests/lean/Demo/Demo.lean
@@ -0,0 +1,148 @@
+-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
+-- [demo]
+import Base
+open Primitives
+
+namespace demo
+
+/- [demo::choose]:
+ Source: 'src/demo.rs', lines 5:0-5:70 -/
+def choose
+ (T : Type) (b : Bool) (x : T) (y : T) :
+ Result (T × (T → Result (T × T)))
+ :=
+ if b
+ then let back_'a := fun ret => Result.ret (ret, y)
+ Result.ret (x, back_'a)
+ else let back_'a := fun ret => Result.ret (x, ret)
+ Result.ret (y, back_'a)
+
+/- [demo::mul2_add1]:
+ Source: 'src/demo.rs', lines 13:0-13:31 -/
+def mul2_add1 (x : U32) : Result U32 :=
+ do
+ let i ← x + x
+ i + 1#u32
+
+/- [demo::use_mul2_add1]:
+ Source: 'src/demo.rs', lines 17:0-17:43 -/
+def use_mul2_add1 (x : U32) (y : U32) : Result U32 :=
+ do
+ let i ← mul2_add1 x
+ i + y
+
+/- [demo::incr]:
+ Source: 'src/demo.rs', lines 21:0-21:31 -/
+def incr (x : U32) : Result U32 :=
+ x + 1#u32
+
+/- [demo::CList]
+ Source: 'src/demo.rs', lines 27:0-27:17 -/
+inductive CList (T : Type) :=
+| CCons : T → CList T → CList T
+| CNil : CList T
+
+/- [demo::list_nth]:
+ Source: 'src/demo.rs', lines 32:0-32:56 -/
+divergent def list_nth (T : Type) (l : CList T) (i : U32) : Result T :=
+ match l with
+ | CList.CCons x tl =>
+ if i = 0#u32
+ then Result.ret x
+ else do
+ let i1 ← i - 1#u32
+ list_nth T tl i1
+ | CList.CNil => Result.fail .panic
+
+/- [demo::list_nth_mut]:
+ Source: 'src/demo.rs', lines 47:0-47:68 -/
+divergent def list_nth_mut
+ (T : Type) (l : CList T) (i : U32) :
+ Result (T × (T → Result (CList T)))
+ :=
+ match l with
+ | CList.CCons x tl =>
+ if i = 0#u32
+ then
+ let back_'a := fun ret => Result.ret (CList.CCons ret tl)
+ Result.ret (x, back_'a)
+ else
+ do
+ let i1 ← i - 1#u32
+ let (t, list_nth_mut_back) ← list_nth_mut T tl i1
+ let back_'a :=
+ fun ret =>
+ do
+ let tl1 ← list_nth_mut_back ret
+ Result.ret (CList.CCons x tl1)
+ Result.ret (t, back_'a)
+ | CList.CNil => Result.fail .panic
+
+/- [demo::list_nth_mut1]: loop 0:
+ Source: 'src/demo.rs', lines 62:0-71:1 -/
+divergent def list_nth_mut1_loop
+ (T : Type) (l : CList T) (i : U32) :
+ Result (T × (T → Result (CList T)))
+ :=
+ match l with
+ | CList.CCons x tl =>
+ if i = 0#u32
+ then
+ let back_'a := fun ret => Result.ret (CList.CCons ret tl)
+ Result.ret (x, back_'a)
+ else
+ do
+ let i1 ← i - 1#u32
+ let (t, back_'a) ← list_nth_mut1_loop T tl i1
+ let back_'a1 :=
+ fun ret => do
+ let tl1 ← back_'a ret
+ Result.ret (CList.CCons x tl1)
+ Result.ret (t, back_'a1)
+ | CList.CNil => Result.fail .panic
+
+/- [demo::list_nth_mut1]:
+ Source: 'src/demo.rs', lines 62:0-62:77 -/
+def list_nth_mut1
+ (T : Type) (l : CList T) (i : U32) :
+ Result (T × (T → Result (CList T)))
+ :=
+ do
+ let (t, back_'a) ← list_nth_mut1_loop T l i
+ Result.ret (t, back_'a)
+
+/- [demo::i32_id]:
+ Source: 'src/demo.rs', lines 73:0-73:28 -/
+divergent def i32_id (i : I32) : Result I32 :=
+ if i = 0#i32
+ then Result.ret 0#i32
+ else do
+ let i1 ← i - 1#i32
+ let i2 ← i32_id i1
+ i2 + 1#i32
+
+/- Trait declaration: [demo::Counter]
+ Source: 'src/demo.rs', lines 83:0-83:17 -/
+structure Counter (Self : Type) where
+ incr : Self → Result (Usize × Self)
+
+/- [demo::{usize}::incr]:
+ Source: 'src/demo.rs', lines 88:4-88:31 -/
+def Usize.incr (self : Usize) : Result (Usize × Usize) :=
+ do
+ let self1 ← self + 1#usize
+ Result.ret (self, self1)
+
+/- Trait implementation: [demo::{usize}]
+ Source: 'src/demo.rs', lines 87:0-87:22 -/
+def demo.CounterUsizeInst : Counter Usize := {
+ incr := Usize.incr
+}
+
+/- [demo::use_counter]:
+ Source: 'src/demo.rs', lines 95:0-95:59 -/
+def use_counter
+ (T : Type) (CounterTInst : Counter T) (cnt : T) : Result (Usize × T) :=
+ CounterTInst.incr cnt
+
+end demo
diff --git a/tests/lean/Demo/Properties.lean b/tests/lean/Demo/Properties.lean
new file mode 100644
index 00000000..cdec7332
--- /dev/null
+++ b/tests/lean/Demo/Properties.lean
@@ -0,0 +1,68 @@
+import Base
+import Demo.Demo
+open Primitives
+open Result
+
+namespace demo
+
+#check U32.add_spec
+
+-- @[pspec]
+theorem mul2_add1_spec (x : U32) (h : 2 * ↑x + 1 ≤ U32.max)
+ : ∃ y, mul2_add1 x = ret y ∧
+ ↑y = 2 * ↑x + (1 : Int)
+ := by
+ rw [mul2_add1]
+ progress with U32.add_spec as ⟨ i ⟩
+ progress as ⟨ i' ⟩
+ simp; scalar_tac
+
+theorem use_mul2_add1_spec (x : U32) (y : U32) (h : 2 * ↑x + 1 + ↑y ≤ U32.max) :
+ ∃ z, use_mul2_add1 x y = ret z ∧
+ ↑z = 2 * ↑x + (1 : Int) + ↑y := by
+ rw [use_mul2_add1]
+ progress with mul2_add1_spec as ⟨ i ⟩
+ progress as ⟨ i' ⟩
+ simp; scalar_tac
+
+open CList
+
+@[simp] def CList.to_list {α : Type} (x : CList α) : List α :=
+ match x with
+ | CNil => []
+ | CCons hd tl => hd :: tl.to_list
+
+theorem list_nth_spec {T : Type} [Inhabited T] (l : CList T) (i : U32)
+ (h : ↑i < l.to_list.len) :
+ ∃ x, list_nth T l i = ret x ∧
+ x = l.to_list.index ↑i
+ := by
+ rw [list_nth]
+ match l with
+ | CNil =>
+ simp_all; scalar_tac
+ | CCons hd tl =>
+ simp_all
+ if hi: i = 0#u32 then
+ simp_all
+ else
+ simp_all
+ progress as ⟨ i1 ⟩
+ progress as ⟨ x ⟩
+ simp_all
+
+theorem i32_id_spec (x : I32) (h : 0 ≤ x.val) :
+ ∃ y, i32_id x = ret y ∧ x.val = y.val := by
+ rw [i32_id]
+ if hx : x = 0#i32 then
+ simp_all
+ else
+ simp_all
+ progress as ⟨ x1 ⟩
+ progress as ⟨ x2 ⟩
+ progress
+ simp_all
+termination_by x.val.toNat
+decreasing_by scalar_decr_tac
+
+end demo
diff --git a/tests/lean/lakefile.lean b/tests/lean/lakefile.lean
index 781fc8b8..3a777824 100644
--- a/tests/lean/lakefile.lean
+++ b/tests/lean/lakefile.lean
@@ -20,3 +20,4 @@ package «tests» {}
@[default_target] lean_lib PoloniusList
@[default_target] lean_lib Arrays
@[default_target] lean_lib Traits
+@[default_target] lean_lib Demo