diff options
author | Son Ho | 2022-02-12 19:31:49 +0100 |
---|---|---|
committer | Son Ho | 2022-02-12 19:31:49 +0100 |
commit | 78c2483d1b3699a76550e404a3224ecc1de8daa2 (patch) | |
tree | bef8997ce1569fb361f06bf9a2146ef311793a2c | |
parent | eeda2eb5df9d9ef8bb7faa6e2f4552555d2d7e39 (diff) |
Make good progress on proving the implications between the invariants
used for the different representations of the hash map
Diffstat (limited to '')
-rw-r--r-- | tests/hashmap/Hashmap.Properties.fst | 130 |
1 files changed, 57 insertions, 73 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst index 5f403c61..c5f8c13c 100644 --- a/tests/hashmap/Hashmap.Properties.fst +++ b/tests/hashmap/Hashmap.Properties.fst @@ -7,7 +7,7 @@ open Hashmap.Types open Hashmap.Clauses open Hashmap.Funs -// To help with the proofs +// To help with the proofs - TODO: remove module InteractiveHelpers = FStar.InteractiveHelpers #set-options "--z3rlimit 50 --fuel 0 --ifuel 1" @@ -122,6 +122,10 @@ module InteractiveHelpers = FStar.InteractiveHelpers /// annoying loop: try to prove something, get an unknown assertion failed error, /// insert a lot of assertions or think *really* deeply to figure out what might /// have happened, etc. All this seems a lot more natural when working with tactics. +/// +/// Simple example: see [slots_t_inv_implies_slots_s_inv]. This lemma is super +/// simple and was probably not required (it is proven with `()`). But I often feel +/// forced to anticipate on problems, otherwise proofs become too painful. /// /// - the proofs often fail or succeed for extremely unpredictable reasons, and are /// extremely hard to debug. @@ -1983,86 +1987,66 @@ let rec hash_map_move_elements_s_flat_lem #t hm al = /// We need to prove that the invariants on the "low-level" representations of /// the hash map imply the invariants on the "high-level" representations. + val slots_t_inv_implies_slots_s_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Lemma (requires (slots_t_inv slots)) (ensures (slots_s_inv (slots_t_v slots))) let slots_t_inv_implies_slots_s_inv #t slots = - - -let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 = - forall(i:nat{i < length slots}). - {:pattern index slots i} - slot_s_inv (length slots) i (index slots i) - -let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Type0 = - forall(i:nat{i < length slots}). - {:pattern index slots i} - slot_t_inv (length slots) i (index slots i) - -hash_map_t_inv -hash_map_slot_s_inv - -val slots_t_inv_implies_assoc_list_lem (#t : Type0) (hm : hash_map_t) - -(* -let rec hash_map_move_elements_s_flat - (#t : Type0) (ntable : hash_map_slots_s_nes t) - (slots : hash_map_s t) : - Tot (result_hash_map_slots_s_nes t) - (decreases slots) = - match slots with - | [] -> Return ntable - | (k,v) :: slots' -> - match hash_map_insert_no_resize_s ntable k v with - | Fail -> Fail - | Return ntable' -> - hash_map_move_elements_s_flat ntable' slots' - - -(* + // Ok, works fine: this lemma was useless. + // Problem is: I can never really predict for sure with F*... + () -/// [nhm]: the new hash map (in which we insert elements) -/// [slot]: the current slot we are emptying -/// [ohm]: the old hash map, which we are moving to [nhm] -/// [i]: the index of [slot] in [ohm] -val hash_map_move_elements_s_flat_lem - (#t : Type0) (nhm : hash_map_slots_s t{is_pos_usize (length hm)}) - (slots : slots_s t) - (i : nat{i <= length slots /\ length slots <= usize_max}) : +val hash_map_t_inv_implies_hash_map_slots_s_inv + (#t : Type0) (hm : hash_map_t t) : + Lemma (requires (hash_map_t_inv hm)) + (ensures (hash_map_slots_s_inv (hash_map_t_slots_v hm))) + +let hash_map_t_inv_implies_hash_map_slots_s_inv #t hm = () // same as previous + +/// Introducing a "partial" version of the hash map invariant, which operates on +/// a suffix of the hash map. +let partial_hash_map_slots_s_inv + (#t : Type0) (len : usize{len > 0}) (offset : usize) + (hm : hash_map_slots_s t{offset + length hm <= usize_max}) : Type0 = + forall(i:nat{i < length hm}). + {:pattern index hm i} + slot_s_inv len (offset + i) (index hm i) + +val partial_hash_map_slots_s_inv_implies_assoc_list_lem + (#t : Type0) (len : usize{len > 0}) (offset : usize) + (hm : hash_map_slots_s t{offset + length hm <= usize_max}) : Lemma (requires ( - index ohm i == slot /\ - (forall (j:nat{j < i}). index j ohm == []))) - (ensures ( - match hash_map_move_elements_from_list_s + partial_hash_map_slots_s_inv len offset hm)) + (ensures (assoc_list_inv (flatten hm))) + (decreases (length hm + length (flatten hm))) -let rec hash_map_move_elements_from_list_s - (#t : Type0) (hm : hash_map_slots_s t{is_pos_usize (length hm)}) - (ls : slot_s t) : - Tot (hash_map_slots_s_nes t) (decreases ls) = - match ls with - | [] -> Return hm - | (key, value) :: ls' -> - match hash_map_insert_no_resize_s hm key value with - | Fail -> Fail - | Return hm' -> - hash_map_move_elements_from_list_s hm' ls' +// Ah! this lemma requires some work (it was obvious, though...) +#push-options "--fuel 1" +let rec partial_hash_map_slots_s_inv_implies_assoc_list_lem #t len offset hm = + match hm with + | [] -> () + | slot :: hm' -> + assert(flatten hm == slot @ flatten hm'); + assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); + match slot with + | [] -> + assert(flatten hm == flatten hm'); + assert(partial_hash_map_slots_s_inv len (offset+1) hm'); + partial_hash_map_slots_s_inv_implies_assoc_list_lem len (offset+1) hm' + | x :: slot' -> + assert(flatten (slot' :: hm') == slot' @ flatten hm'); + assume(partial_hash_map_slots_s_inv len offset (slot' :: hm')); + partial_hash_map_slots_s_inv_implies_assoc_list_lem len offset (slot' :: hm'); + assume(for_all (binding_neq x) (flatten (slot' :: hm'))) +#pop-options -let rec hash_map_move_elements_s - (#t : Type0) (hm : hash_map_slots_s_nes t) - (slots : slots_s t) (i : usize{i <= length slots /\ length slots <= usize_max}) : - Tot (result (hash_map_slots_s_nes t)) - (decreases (length slots - i)) = - let len = length slots in - if i < len then - begin - let slot = index slots i in - match hash_map_move_elements_from_list_s hm slot with - | Fail -> Fail - | Return hm' -> - let slots' = list_update slots i [] in - hash_map_move_elements_s hm' slots' (i+1) - end - else Return hm +val hash_map_slots_s_inv_implies_assoc_list_lem + (#t : Type0) (hm : hash_map_slots_s t) : + Lemma (requires (hash_map_slots_s_inv hm)) + (ensures (assoc_list_inv (flatten hm))) + +let hash_map_slots_s_inv_implies_assoc_list_lem #t hm = + partial_hash_map_slots_s_inv_implies_assoc_list_lem (length hm) 0 hm |