aboutsummaryrefslogtreecommitdiff
path: root/spartan
diff options
context:
space:
mode:
Diffstat (limited to 'spartan')
-rw-r--r--spartan/data/List.thy192
-rw-r--r--spartan/data/Maybe.thy76
-rw-r--r--spartan/data/More_Types.thy104
3 files changed, 0 insertions, 372 deletions
diff --git a/spartan/data/List.thy b/spartan/data/List.thy
deleted file mode 100644
index 1798a23..0000000
--- a/spartan/data/List.thy
+++ /dev/null
@@ -1,192 +0,0 @@
-chapter \<open>Lists\<close>
-
-theory List
-imports Maybe
-
-begin
-
-(*TODO: Inductive type and recursive function definitions. The ad-hoc
- axiomatization below should be subsumed once general inductive types are
- properly implemented.*)
-
-axiomatization
- List :: \<open>o \<Rightarrow> o\<close> and
- nil :: \<open>o \<Rightarrow> o\<close> and
- cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
- ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
-where
- ListF: "A: U i \<Longrightarrow> List A: U i" and
-
- List_nil: "A: U i \<Longrightarrow> nil A: List A" and
-
- List_cons: "\<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> cons A x xs: List A" and
-
- ListE: "\<lbrakk>
- xs: List A;
- c\<^sub>0: C (nil A);
- \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
- \<And>xs. xs: List A \<Longrightarrow> C xs: U i
- \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs: C xs" and
-
- List_comp_nil: "\<lbrakk>
- c\<^sub>0: C (nil A);
- \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
- \<And>xs. xs: List A \<Longrightarrow> C xs: U i
- \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (nil A) \<equiv> c\<^sub>0" and
-
- List_comp_cons: "\<lbrakk>
- xs: List A;
- c\<^sub>0: C (nil A);
- \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
- \<And>xs. xs: List A \<Longrightarrow> C xs: U i
- \<rbrakk> \<Longrightarrow>
- ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (cons A x xs) \<equiv>
- f x xs (ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs)"
-
-lemmas
- [intros] = ListF List_nil List_cons and
- [elims "?xs"] = ListE and
- [comps] = List_comp_nil List_comp_cons
-
-abbreviation "ListRec A C \<equiv> ListInd A (\<lambda>_. C)"
-
-Lemma (derive) ListCase:
- assumes
- "xs: List A" and
- nil_case: "c\<^sub>0: C (nil A)" and
- cons_case: "\<And>x xs. \<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> f x xs: C (cons A x xs)" and
- "\<And>xs. xs: List A \<Longrightarrow> C xs: U i"
- shows "?List_cases A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs. f x xs) xs: C xs"
- by (elim xs) (fact nil_case, rule cons_case)
-
-lemmas List_cases [cases] = ListCase[unfolded ListCase_def]
-
-
-section \<open>Notation\<close>
-
-definition nil_i ("[]")
- where [implicit]: "[] \<equiv> nil ?"
-
-definition cons_i (infixr "#" 120)
- where [implicit]: "x # xs \<equiv> cons ? x xs"
-
-translations
- "[]" \<leftharpoondown> "CONST List.nil A"
- "x # xs" \<leftharpoondown> "CONST List.cons A x xs"
-syntax
- "_list" :: \<open>args \<Rightarrow> o\<close> ("[_]")
-translations
- "[x, xs]" \<rightleftharpoons> "x # [xs]"
- "[x]" \<rightleftharpoons> "x # []"
-
-
-section \<open>Standard functions\<close>
-
-subsection \<open>Head and tail\<close>
-
-Lemma (derive) head:
- assumes "A: U i" "xs: List A"
- shows "Maybe A"
-proof (cases xs)
- show "none: Maybe A" by intro
- show "\<And>x. x: A \<Longrightarrow> some x: Maybe A" by intro
-qed
-
-Lemma (derive) tail:
- assumes "A: U i" "xs: List A"
- shows "List A"
-proof (cases xs)
- show "[]: List A" by intro
- show "\<And>xs. xs: List A \<Longrightarrow> xs: List A" .
-qed
-
-definition head_i ("head") where [implicit]: "head xs \<equiv> List.head ? xs"
-definition tail_i ("tail") where [implicit]: "tail xs \<equiv> List.tail ? xs"
-
-translations
- "head" \<leftharpoondown> "CONST List.head A"
- "tail" \<leftharpoondown> "CONST List.tail A"
-
-Lemma head_type [typechk]:
- assumes "A: U i" "xs: List A"
- shows "head xs: Maybe A"
- unfolding head_def by typechk
-
-Lemma head_of_cons [comps]:
- assumes "A: U i" "x: A" "xs: List A"
- shows "head (x # xs) \<equiv> some x"
- unfolding head_def ListCase_def by reduce
-
-Lemma tail_type [typechk]:
- assumes "A: U i" "xs: List A"
- shows "tail xs: List A"
- unfolding tail_def by typechk
-
-Lemma tail_of_cons [comps]:
- assumes "A: U i" "x: A" "xs: List A"
- shows "tail (x # xs) \<equiv> xs"
- unfolding tail_def ListCase_def by reduce
-
-subsection \<open>Append\<close>
-
-Lemma (derive) app:
- assumes "A: U i" "xs: List A" "ys: List A"
- shows "List A"
- apply (elim xs)
- \<guillemotright> by (fact \<open>ys:_\<close>)
- \<guillemotright> prems vars x _ rec
- proof - show "x # rec: List A" by typechk qed
- done
-
-definition app_i ("app") where [implicit]: "app xs ys \<equiv> List.app ? xs ys"
-
-translations "app" \<leftharpoondown> "CONST List.app A"
-
-subsection \<open>Map\<close>
-
-Lemma (derive) map:
- assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
- shows "List B"
-proof (elim xs)
- show "[]: List B" by intro
- next fix x ys
- assume "x: A" "ys: List B"
- show "f x # ys: List B" by typechk
-qed
-
-definition map_i ("map") where [implicit]: "map \<equiv> List.map ? ?"
-
-translations "map" \<leftharpoondown> "CONST List.map A B"
-
-Lemma map_type [typechk]:
- assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
- shows "map f xs: List B"
- unfolding map_def by typechk
-
-
-subsection \<open>Reverse\<close>
-
-Lemma (derive) rev:
- assumes "A: U i" "xs: List A"
- shows "List A"
- apply (elim xs)
- \<guillemotright> by (rule List_nil)
- \<guillemotright> prems vars x _ rec proof - show "app rec [x]: List A" by typechk qed
- done
-
-definition rev_i ("rev") where [implicit]: "rev \<equiv> List.rev ?"
-
-translations "rev" \<leftharpoondown> "CONST List.rev A"
-
-Lemma rev_type [typechk]:
- assumes "A: U i" "xs: List A"
- shows "rev xs: List A"
- unfolding rev_def by typechk
-
-Lemma rev_nil [comps]:
- assumes "A: U i"
- shows "rev (nil A) \<equiv> nil A"
- unfolding rev_def by reduce
-
-
-end
diff --git a/spartan/data/Maybe.thy b/spartan/data/Maybe.thy
deleted file mode 100644
index 1efbb95..0000000
--- a/spartan/data/Maybe.thy
+++ /dev/null
@@ -1,76 +0,0 @@
-chapter \<open>Maybe type\<close>
-
-theory Maybe
-imports More_Types
-
-begin
-
-text \<open>Defined as a sum.\<close>
-
-definition "Maybe A \<equiv> A \<or> \<top>"
-definition "none A \<equiv> inr A \<top> tt"
-definition "some A a \<equiv> inl A \<top> a"
-
-lemma
- MaybeF: "A: U i \<Longrightarrow> Maybe A: U i" and
- Maybe_none: "A: U i \<Longrightarrow> none A: Maybe A" and
- Maybe_some: "a: A \<Longrightarrow> some A a: Maybe A"
- unfolding Maybe_def none_def some_def by typechk+
-
-Lemma (derive) MaybeInd:
- assumes
- "A: U i"
- "\<And>m. m: Maybe A \<Longrightarrow> C m: U i"
- "c\<^sub>0: C (none A)"
- "\<And>a. a: A \<Longrightarrow> f a: C (some A a)"
- "m: Maybe A"
- shows "?MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) m: C m"
- supply assms[unfolded Maybe_def none_def some_def]
- apply (elim m)
- \<guillemotright> unfolding Maybe_def .
- \<guillemotright> by (rule \<open>_ \<Longrightarrow> _: C (inl _ _ _)\<close>)
- \<guillemotright> by elim (rule \<open>_: C (inr _ _ _)\<close>)
- done
-
-Lemma Maybe_comp_none:
- assumes
- "A: U i"
- "c\<^sub>0: C (none A)"
- "\<And>a. a: A \<Longrightarrow> f a: C (some A a)"
- "\<And>m. m: Maybe A \<Longrightarrow> C m: U i"
- shows "MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) (none A) \<equiv> c\<^sub>0"
- supply assms[unfolded Maybe_def some_def none_def]
- unfolding MaybeInd_def none_def by reduce
-
-Lemma Maybe_comp_some:
- assumes
- "A: U i"
- "a: A"
- "c\<^sub>0: C (none A)"
- "\<And>a. a: A \<Longrightarrow> f a: C (some A a)"
- "\<And>m. m: Maybe A \<Longrightarrow> C m: U i"
- shows "MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) (some A a) \<equiv> f a"
- supply assms[unfolded Maybe_def some_def none_def]
- unfolding MaybeInd_def some_def by (reduce add: Maybe_def)
-
-lemmas
- [intros] = MaybeF Maybe_none Maybe_some and
- [comps] = Maybe_comp_none Maybe_comp_some and
- MaybeE [elims "?m"] = MaybeInd[rotated 4]
-lemmas
- Maybe_cases [cases] = MaybeE
-
-abbreviation "MaybeRec A C \<equiv> MaybeInd A (K C)"
-
-definition none_i ("none")
- where [implicit]: "none \<equiv> Maybe.none ?"
-
-definition some_i ("some")
- where [implicit]: "some a \<equiv> Maybe.some ? a"
-
-translations
- "none" \<leftharpoondown> "CONST Maybe.none A"
- "some a" \<leftharpoondown> "CONST Maybe.some A a"
-
-
-end
diff --git a/spartan/data/More_Types.thy b/spartan/data/More_Types.thy
deleted file mode 100644
index 1d7abb9..0000000
--- a/spartan/data/More_Types.thy
+++ /dev/null
@@ -1,104 +0,0 @@
-chapter \<open>Some standard types\<close>
-
-theory More_Types
-imports Spartan
-
-begin
-
-section \<open>Sum type\<close>
-
-axiomatization
- Sum :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> and
- inl :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
- inr :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
- SumInd :: \<open>o \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
-
-notation Sum (infixl "\<or>" 50)
-
-axiomatization where
- SumF: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A \<or> B: U i" and
-
- Sum_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl A B a: A \<or> B" and
-
- Sum_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr A B b: A \<or> B" and
-
- SumE: "\<lbrakk>
- s: A \<or> B;
- \<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
- \<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
- \<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
- \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) s: C s" and
-
- Sum_comp_inl: "\<lbrakk>
- a: A;
- \<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
- \<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
- \<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
- \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inl A B a) \<equiv> c a" and
-
- Sum_comp_inr: "\<lbrakk>
- b: B;
- \<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
- \<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
- \<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
- \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inr A B b) \<equiv> d b"
-
-lemmas
- [intros] = SumF Sum_inl Sum_inr and
- [elims ?s] = SumE and
- [comps] = Sum_comp_inl Sum_comp_inr
-
-method left = rule Sum_inl
-method right = rule Sum_inr
-
-
-section \<open>Empty and unit types\<close>
-
-axiomatization
- Top :: \<open>o\<close> and
- tt :: \<open>o\<close> and
- TopInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
-and
- Bot :: \<open>o\<close> and
- BotInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
-
-notation Top ("\<top>") and Bot ("\<bottom>")
-
-axiomatization where
- TopF: "\<top>: U i" and
-
- TopI: "tt: \<top>" and
-
- TopE: "\<lbrakk>a: \<top>; \<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c a: C a" and
-
- Top_comp: "\<lbrakk>\<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c tt \<equiv> c"
-and
- BotF: "\<bottom>: U i" and
-
- BotE: "\<lbrakk>x: \<bottom>; \<And>x. x: \<bottom> \<Longrightarrow> C x: U i\<rbrakk> \<Longrightarrow> BotInd (\<lambda>x. C x) x: C x"
-
-lemmas
- [intros] = TopF TopI BotF and
- [elims ?a] = TopE and
- [elims ?x] = BotE and
- [comps] = Top_comp
-
-
-section \<open>Booleans\<close>
-
-definition "Bool \<equiv> \<top> \<or> \<top>"
-definition "true \<equiv> inl \<top> \<top> tt"
-definition "false \<equiv> inr \<top> \<top> tt"
-
-Lemma
- BoolF: "Bool: U i" and
- Bool_true: "true: Bool" and
- Bool_false: "false: Bool"
- unfolding Bool_def true_def false_def by typechk+
-
-lemmas [intros] = BoolF Bool_true Bool_false
-
-\<comment> \<open>Can define if-then-else etc.\<close>
-
-
-end