diff options
Diffstat (limited to 'spartan/lib')
-rw-r--r-- | spartan/lib/List.thy | 191 | ||||
-rw-r--r-- | spartan/lib/Maybe.thy | 75 | ||||
-rw-r--r-- | spartan/lib/Prelude.thy | 151 |
3 files changed, 0 insertions, 417 deletions
diff --git a/spartan/lib/List.thy b/spartan/lib/List.thy deleted file mode 100644 index 4beb9b6..0000000 --- a/spartan/lib/List.thy +++ /dev/null @@ -1,191 +0,0 @@ -chapter \<open>Lists\<close> - -theory List -imports Maybe - -begin - -(*TODO: Inductive type and recursive function definitions. The ad-hoc - axiomatization below should be subsumed once general inductive types are - properly implemented.*) - -axiomatization - List :: \<open>o \<Rightarrow> o\<close> and - nil :: \<open>o \<Rightarrow> o\<close> and - cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and - ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close> -where - ListF: "A: U i \<Longrightarrow> List A: U i" and - - List_nil: "A: U i \<Longrightarrow> nil A: List A" and - - List_cons: "\<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> cons A x xs: List A" and - - ListE: "\<lbrakk> - xs: List A; - c\<^sub>0: C (nil A); - \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs); - \<And>xs. xs: List A \<Longrightarrow> C xs: U i - \<rbrakk> \<Longrightarrow> ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) xs: C xs" and - - List_comp_nil: "\<lbrakk> - c\<^sub>0: C (nil A); - \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs); - \<And>xs. xs: List A \<Longrightarrow> C xs: U i - \<rbrakk> \<Longrightarrow> ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) (nil A) \<equiv> c\<^sub>0" and - - List_comp_cons: "\<lbrakk> - xs: List A; - c\<^sub>0: C (nil A); - \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs); - \<And>xs. xs: List A \<Longrightarrow> C xs: U i - \<rbrakk> \<Longrightarrow> - ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) (cons A x xs) \<equiv> - f x xs (ListInd A (fn xs. C xs) c\<^sub>0 (fn x xs rec. f x xs rec) xs)" - -lemmas - [form] = ListF and - [intr, intro] = List_nil List_cons and - [elim "?xs"] = ListE and - [comp] = List_comp_nil List_comp_cons - -abbreviation "ListRec A C \<equiv> ListInd A (fn _. C)" - -Lemma list_cases [cases]: - assumes - "xs: List A" and - nil_case: "c\<^sub>0: C (nil A)" and - cons_case: "\<And>x xs. \<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> f x xs: C (cons A x xs)" and - "\<And>xs. xs: List A \<Longrightarrow> C xs: U i" - shows "C xs" - by (elim xs) (fact nil_case, rule cons_case) - - -section \<open>Notation\<close> - -definition nil_i ("[]") - where [implicit]: "[] \<equiv> nil {}" - -definition cons_i (infixr "#" 120) - where [implicit]: "x # xs \<equiv> cons {} x xs" - -translations - "[]" \<leftharpoondown> "CONST List.nil A" - "x # xs" \<leftharpoondown> "CONST List.cons A x xs" -syntax - "_list" :: \<open>args \<Rightarrow> o\<close> ("[_]") -translations - "[x, xs]" \<rightleftharpoons> "x # [xs]" - "[x]" \<rightleftharpoons> "x # []" - - -section \<open>Standard functions\<close> - -subsection \<open>Head and tail\<close> - -Definition head: - assumes "A: U i" "xs: List A" - shows "Maybe A" -proof (cases xs) - show "none: Maybe A" by intro - show "\<And>x. x: A \<Longrightarrow> some x: Maybe A" by intro -qed - -Definition tail: - assumes "A: U i" "xs: List A" - shows "List A" -proof (cases xs) - show "[]: List A" by intro - show "\<And>xs. xs: List A \<Longrightarrow> xs: List A" . -qed - -definition head_i ("head") where [implicit]: "head xs \<equiv> List.head {} xs" -definition tail_i ("tail") where [implicit]: "tail xs \<equiv> List.tail {} xs" - -translations - "head" \<leftharpoondown> "CONST List.head A" - "tail" \<leftharpoondown> "CONST List.tail A" - -Lemma head_type [type]: - assumes "A: U i" "xs: List A" - shows "head xs: Maybe A" - unfolding head_def by typechk - -Lemma head_of_cons [comp]: - assumes "A: U i" "x: A" "xs: List A" - shows "head (x # xs) \<equiv> some x" - unfolding head_def by compute - -Lemma tail_type [type]: - assumes "A: U i" "xs: List A" - shows "tail xs: List A" - unfolding tail_def by typechk - -Lemma tail_of_cons [comp]: - assumes "A: U i" "x: A" "xs: List A" - shows "tail (x # xs) \<equiv> xs" - unfolding tail_def by compute - -subsection \<open>Append\<close> - -Definition app: - assumes "A: U i" "xs: List A" "ys: List A" - shows "List A" - apply (elim xs) - \<^item> by (fact \<open>ys:_\<close>) - \<^item> vars x _ rec - proof - show "x # rec: List A" by typechk qed - done - -definition app_i ("app") where [implicit]: "app xs ys \<equiv> List.app {} xs ys" - -translations "app" \<leftharpoondown> "CONST List.app A" - -subsection \<open>Map\<close> - -Definition map: - assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A" - shows "List B" -proof (elim xs) - show "[]: List B" by intro - next fix x ys - assuming "x: A" "ys: List B" - show "f x # ys: List B" by typechk -qed - -definition map_i ("map") where [implicit]: "map \<equiv> List.map {} {}" - -translations "map" \<leftharpoondown> "CONST List.map A B" - -Lemma map_type [type]: - assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A" - shows "map f xs: List B" - unfolding map_def by typechk - - -subsection \<open>Reverse\<close> - -Definition rev: - assumes "A: U i" "xs: List A" - shows "List A" - apply (elim xs) - \<^item> by (rule List_nil) - \<^item> vars x _ rec proof - show "app rec [x]: List A" by typechk qed - done - -definition rev_i ("rev") where [implicit]: "rev \<equiv> List.rev {}" - -translations "rev" \<leftharpoondown> "CONST List.rev A" - -Lemma rev_type [type]: - assumes "A: U i" "xs: List A" - shows "rev xs: List A" - unfolding rev_def by typechk - -Lemma rev_nil [comp]: - assumes "A: U i" - shows "rev (nil A) \<equiv> nil A" - unfolding rev_def by compute - - -end diff --git a/spartan/lib/Maybe.thy b/spartan/lib/Maybe.thy deleted file mode 100644 index 452acc2..0000000 --- a/spartan/lib/Maybe.thy +++ /dev/null @@ -1,75 +0,0 @@ -chapter \<open>Maybe type\<close> - -theory Maybe -imports Prelude - -begin - -text \<open>Defined as a sum.\<close> - -definition "Maybe A \<equiv> A \<or> \<top>" -definition "none A \<equiv> inr A \<top> tt" -definition "some A a \<equiv> inl A \<top> a" - -lemma - MaybeF: "A: U i \<Longrightarrow> Maybe A: U i" and - Maybe_none: "A: U i \<Longrightarrow> none A: Maybe A" and - Maybe_some: "a: A \<Longrightarrow> some A a: Maybe A" - unfolding Maybe_def none_def some_def by typechk+ - -Definition MaybeInd: - assumes - "A: U i" - "\<And>m. m: Maybe A \<Longrightarrow> C m: U i" - "c\<^sub>0: C (none A)" - "\<And>a. a: A \<Longrightarrow> f a: C (some A a)" - "m: Maybe A" - shows "C m" - using assms[unfolded Maybe_def none_def some_def, type] - apply (elim m) - apply fact - apply (elim, fact) - done - -Lemma Maybe_comp_none: - assumes - "A: U i" - "c\<^sub>0: C (none A)" - "\<And>a. a: A \<Longrightarrow> f a: C (some A a)" - "\<And>m. m: Maybe A \<Longrightarrow> C m: U i" - shows "MaybeInd A C c\<^sub>0 f (none A) \<equiv> c\<^sub>0" - using assms - unfolding Maybe_def MaybeInd_def none_def some_def - by compute - -Lemma Maybe_comp_some: - assumes - "A: U i" - "a: A" - "c\<^sub>0: C (none A)" - "\<And>a. a: A \<Longrightarrow> f a: C (some A a)" - "\<And>m. m: Maybe A \<Longrightarrow> C m: U i" - shows "MaybeInd A C c\<^sub>0 f (some A a) \<equiv> f a" - using assms - unfolding Maybe_def MaybeInd_def none_def some_def - by compute - -lemmas - [form] = MaybeF and - [intr, intro] = Maybe_none Maybe_some and - [comp] = Maybe_comp_none Maybe_comp_some and - MaybeE [elim "?m"] = MaybeInd[rotated 4] -lemmas - Maybe_cases [cases] = MaybeE - -abbreviation "MaybeRec A C \<equiv> MaybeInd A (K C)" - -definition none_i ("none") where [implicit]: "none \<equiv> Maybe.none {}" -definition some_i ("some") where [implicit]: "some a \<equiv> Maybe.some {} a" - -translations - "none" \<leftharpoondown> "CONST Maybe.none A" - "some a" \<leftharpoondown> "CONST Maybe.some A a" - - -end diff --git a/spartan/lib/Prelude.thy b/spartan/lib/Prelude.thy deleted file mode 100644 index 56adbfc..0000000 --- a/spartan/lib/Prelude.thy +++ /dev/null @@ -1,151 +0,0 @@ -theory Prelude -imports Spartan - -begin - -section \<open>Sum type\<close> - -axiomatization - Sum :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> and - inl :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and - inr :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and - SumInd :: \<open>o \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close> - -notation Sum (infixl "\<or>" 50) - -axiomatization where - SumF: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A \<or> B: U i" and - - Sum_inl: "\<lbrakk>B: U i; a: A\<rbrakk> \<Longrightarrow> inl A B a: A \<or> B" and - - Sum_inr: "\<lbrakk>A: U i; b: B\<rbrakk> \<Longrightarrow> inr A B b: A \<or> B" and - - SumE: "\<lbrakk> - s: A \<or> B; - \<And>s. s: A \<or> B \<Longrightarrow> C s: U i; - \<And>a. a: A \<Longrightarrow> c a: C (inl A B a); - \<And>b. b: B \<Longrightarrow> d b: C (inr A B b) - \<rbrakk> \<Longrightarrow> SumInd A B (fn s. C s) (fn a. c a) (fn b. d b) s: C s" and - - Sum_comp_inl: "\<lbrakk> - a: A; - \<And>s. s: A \<or> B \<Longrightarrow> C s: U i; - \<And>a. a: A \<Longrightarrow> c a: C (inl A B a); - \<And>b. b: B \<Longrightarrow> d b: C (inr A B b) - \<rbrakk> \<Longrightarrow> SumInd A B (fn s. C s) (fn a. c a) (fn b. d b) (inl A B a) \<equiv> c a" and - - Sum_comp_inr: "\<lbrakk> - b: B; - \<And>s. s: A \<or> B \<Longrightarrow> C s: U i; - \<And>a. a: A \<Longrightarrow> c a: C (inl A B a); - \<And>b. b: B \<Longrightarrow> d b: C (inr A B b) - \<rbrakk> \<Longrightarrow> SumInd A B (fn s. C s) (fn a. c a) (fn b. d b) (inr A B b) \<equiv> d b" - -lemmas - [form] = SumF and - [intr] = Sum_inl Sum_inr and - [intro] = Sum_inl[rotated] Sum_inr[rotated] and - [elim ?s] = SumE and - [comp] = Sum_comp_inl Sum_comp_inr - -method left = rule Sum_inl -method right = rule Sum_inr - - -section \<open>Empty and unit types\<close> - -axiomatization - Top :: \<open>o\<close> and - tt :: \<open>o\<close> and - TopInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> -and - Bot :: \<open>o\<close> and - BotInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close> - -notation Top ("\<top>") and Bot ("\<bottom>") - -axiomatization where - TopF: "\<top>: U i" and - - TopI: "tt: \<top>" and - - TopE: "\<lbrakk>a: \<top>; \<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (fn x. C x) c a: C a" and - - Top_comp: "\<lbrakk>\<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (fn x. C x) c tt \<equiv> c" -and - BotF: "\<bottom>: U i" and - - BotE: "\<lbrakk>x: \<bottom>; \<And>x. x: \<bottom> \<Longrightarrow> C x: U i\<rbrakk> \<Longrightarrow> BotInd (fn x. C x) x: C x" - -lemmas - [form] = TopF BotF and - [intr, intro] = TopI and - [elim ?a] = TopE and - [elim ?x] = BotE and - [comp] = Top_comp - - -section \<open>Booleans\<close> - -definition "Bool \<equiv> \<top> \<or> \<top>" -definition "true \<equiv> inl \<top> \<top> tt" -definition "false \<equiv> inr \<top> \<top> tt" - -Lemma - BoolF: "Bool: U i" and - Bool_true: "true: Bool" and - Bool_false: "false: Bool" - unfolding Bool_def true_def false_def by typechk+ - -\<comment> \<open>Definitions like these should be handled by a future function package\<close> -Definition ifelse [rotated 1]: - assumes *[unfolded Bool_def true_def false_def]: - "\<And>x. x: Bool \<Longrightarrow> C x: U i" - "x: Bool" - "a: C true" - "b: C false" - shows "C x" - using assms[unfolded Bool_def true_def false_def, type] - by (elim x) (elim, fact)+ - -Lemma if_true: - assumes - "\<And>x. x: Bool \<Longrightarrow> C x: U i" - "a: C true" - "b: C false" - shows "ifelse C true a b \<equiv> a" - unfolding ifelse_def true_def - using assms unfolding Bool_def true_def false_def - by compute - -Lemma if_false: - assumes - "\<And>x. x: Bool \<Longrightarrow> C x: U i" - "a: C true" - "b: C false" - shows "ifelse C false a b \<equiv> b" - unfolding ifelse_def false_def - using assms unfolding Bool_def true_def false_def - by compute - -lemmas - [form] = BoolF and - [intr, intro] = Bool_true Bool_false and - [comp] = if_true if_false and - [elim ?x] = ifelse -lemmas - BoolE = ifelse - -subsection \<open>Notation\<close> - -definition ifelse_i ("if _ then _ else _") - where [implicit]: "if x then a else b \<equiv> ifelse {} x a b" - -translations "if x then a else b" \<leftharpoondown> "CONST ifelse C x a b" - -subsection \<open>Logical connectives\<close> - -definition not ("!_") where "!x \<equiv> ifelse (K Bool) x false true" - - -end |