aboutsummaryrefslogtreecommitdiff
path: root/mltt/core/tactics.ML
diff options
context:
space:
mode:
Diffstat (limited to 'mltt/core/tactics.ML')
-rw-r--r--mltt/core/tactics.ML180
1 files changed, 180 insertions, 0 deletions
diff --git a/mltt/core/tactics.ML b/mltt/core/tactics.ML
new file mode 100644
index 0000000..6876d5c
--- /dev/null
+++ b/mltt/core/tactics.ML
@@ -0,0 +1,180 @@
+(* Title: tactics.ML
+ Author: Joshua Chen
+
+General tactics for dependent type theory.
+*)
+
+structure Tactics:
+sig
+
+val solve_side_conds: int Config.T
+val SIDE_CONDS: int -> context_tactic' -> thm list -> context_tactic'
+val rule_ctac: thm list -> context_tactic'
+val dest_ctac: int option -> thm list -> context_tactic'
+val intro_ctac: context_tactic'
+val elim_ctac: term list -> context_tactic'
+val cases_ctac: term -> context_tactic'
+
+end = struct
+
+
+(* Side conditions *)
+val solve_side_conds = Attrib.setup_config_int \<^binding>\<open>solve_side_conds\<close> (K 2)
+
+fun SIDE_CONDS j ctac facts i (cst as (ctxt, st)) = cst |>
+ (case Config.get ctxt solve_side_conds of
+ 1 => (ctac CTHEN_ALL_NEW (CTRY o Types.known_ctac facts)) i
+ | 2 => ctac i CTHEN CREPEAT_IN_RANGE (i + j) (Thm.nprems_of st - i)
+ (CTRY o CREPEAT_ALL_NEW_FWD (Types.check_infer facts))
+ | _ => ctac i)
+
+
+(* rule, dest, intro *)
+
+local
+ fun mk_rules _ ths [] = ths
+ | mk_rules n ths ths' =
+ let val ths'' = foldr1 (op @)
+ (map
+ (fn th => [rotate_prems n (th RS @{thm PiE})] handle THM _ => [])
+ ths')
+ in
+ mk_rules n (ths @ ths') ths''
+ end
+in
+
+(*Resolves with given rules*)
+fun rule_ctac ths i (ctxt, st) =
+ TACTIC_CONTEXT ctxt (resolve_tac ctxt (mk_rules 0 [] ths) i st)
+
+(*Attempts destruct-resolution with the n-th premise of the given rules*)
+fun dest_ctac opt_n ths i (ctxt, st) =
+ TACTIC_CONTEXT ctxt (dresolve_tac ctxt
+ (mk_rules (case opt_n of NONE => 0 | SOME 0 => 0 | SOME n => n-1) [] ths)
+ i st)
+
+end
+
+(*Applies an appropriate introduction rule*)
+val intro_ctac = CONTEXT_TACTIC' (fn ctxt => SUBGOAL (fn (goal, i) =>
+ let val concl = Logic.strip_assums_concl goal in
+ if Lib.is_typing concl andalso Lib.is_rigid (Lib.type_of_typing concl)
+ then resolve_tac ctxt (Named_Theorems.get ctxt \<^named_theorems>\<open>intro\<close>) i
+ else no_tac
+ end))
+
+
+(* Induction/elimination *)
+
+(*Pushes a known typing t:T into a \<Prod>-type.
+ This tactic is well-behaved only when t is sufficiently well specified
+ (otherwise there might be multiple possible judgments t:T that unify, and
+ which is chosen is undefined).*)
+fun internalize_fact_tac t =
+ Subgoal.FOCUS_PARAMS (fn {context = ctxt, concl = raw_concl, ...} =>
+ let
+ val concl = Logic.strip_assums_concl (Thm.term_of raw_concl)
+ val C = Lib.type_of_typing concl
+ val B = Thm.cterm_of ctxt (Lib.lambda_var t C)
+ val a = Thm.cterm_of ctxt t
+ (*The resolvent is PiE[where ?B=B and ?a=a]*)
+ val resolvent =
+ Drule.infer_instantiate' ctxt [NONE, NONE, SOME B, SOME a] @{thm PiE}
+ in
+ HEADGOAL (resolve_tac ctxt [resolvent])
+ (*Unify with the correct type T*)
+ THEN SOMEGOAL (NO_CONTEXT_TACTIC ctxt o Types.known_ctac [])
+ end)
+
+fun elim_core_tac tms types ctxt =
+ let
+ val rule_insts = map ((Elim.lookup_rule ctxt) o Term.head_of) types
+ val rules = flat (map
+ (fn rule_inst => case rule_inst of
+ NONE => []
+ | SOME (rl, idxnames) => [Drule.infer_instantiate ctxt
+ (idxnames ~~ map (Thm.cterm_of ctxt) tms) rl])
+ rule_insts)
+ in
+ resolve_tac ctxt rules
+ THEN' RANGE (replicate (length tms) (NO_CONTEXT_TACTIC ctxt o Types.check_infer []))
+ end handle Option => K no_tac
+
+(*Premises that have already been pushed into the \<Prod>-type*)
+structure Inserts = Proof_Data (
+ type T = term Item_Net.T
+ val init = K (Item_Net.init Term.aconv_untyped single)
+)
+
+fun elim_ctac tms =
+ case tms of
+ [] => CONTEXT_TACTIC' (fn ctxt => eresolve_tac ctxt (map #1 (Elim.rules ctxt)))
+ | major :: _ => CONTEXT_SUBGOAL (fn (goal, _) => fn cst as (ctxt, st) =>
+ let
+ val facts = map Thm.prop_of (Context_Facts.known ctxt)
+ val prems = Logic.strip_assums_hyp goal
+ val template = Lib.typing_of_term major
+ val types = filter (fn th => Term.could_unify (template, th)) (facts @ prems)
+ |> map Lib.type_of_typing
+ in case types of
+ [] => no_ctac cst
+ | _ =>
+ let
+ val inserts = facts @ prems
+ |> filter Lib.is_typing
+ |> map Lib.dest_typing
+ |> filter_out (fn (t, _) =>
+ Term.aconv (t, major) orelse Item_Net.member (Inserts.get ctxt) t)
+ |> map (fn (t, T) => ((t, T), Lib.subterm_count_distinct tms T))
+ |> filter (fn (_, i) => i > 0)
+ (*`t1: T1` comes before `t2: T2` if T1 contains t2 as subterm.
+ If they are incomparable, then order by decreasing
+ `subterm_count_distinct tms T`*)
+ |> sort (fn (((t1, _), i), ((_, T2), j)) =>
+ Lib.cond_order (Lib.subterm_order T2 t1) (int_ord (j, i)))
+ |> map (#1 o #1)
+ val record_inserts = Inserts.map (fold Item_Net.update inserts)
+ val tac =
+ (*Push premises having a subterm in `tms` into a \<Prod>*)
+ fold (fn t => fn tac =>
+ tac THEN HEADGOAL (internalize_fact_tac t ctxt))
+ inserts all_tac
+ (*Apply elimination rule*)
+ THEN HEADGOAL (
+ elim_core_tac tms types ctxt
+ (*Pull pushed premises back out*)
+ THEN_ALL_NEW (SUBGOAL (fn (_, i) =>
+ REPEAT_DETERM_N (length inserts)
+ (resolve_tac ctxt @{thms PiI[rotated]} i))))
+ in
+ TACTIC_CONTEXT (record_inserts ctxt) (tac st)
+ end
+ end)
+
+fun cases_ctac tm =
+ let fun tac ctxt =
+ SUBGOAL (fn (goal, i) =>
+ let
+ val facts = Proof_Context.facts_of ctxt
+ val prems = Logic.strip_assums_hyp goal
+ val template = Lib.typing_of_term tm
+ val types =
+ map (Thm.prop_of o #1) (Facts.could_unify facts template)
+ @ filter (fn prem => Term.could_unify (template, prem)) prems
+ |> map Lib.type_of_typing
+ val res = (case types of
+ [typ] => Drule.infer_instantiate' ctxt [SOME (Thm.cterm_of ctxt tm)]
+ (the (Case.lookup_rule ctxt (Term.head_of typ)))
+ | [] => raise Option
+ | _ => raise error (Syntax.string_of_term ctxt tm ^ "not uniquely typed"))
+ handle Option =>
+ error ("No case rule known for " ^ (Syntax.string_of_term ctxt tm))
+ in
+ resolve_tac ctxt [res] i
+ end)
+ in CONTEXT_TACTIC' tac end
+
+
+end
+
+open Tactics