aboutsummaryrefslogtreecommitdiff
path: root/hott
diff options
context:
space:
mode:
Diffstat (limited to 'hott')
-rw-r--r--hott/Equivalence.thy34
-rw-r--r--hott/Identity.thy47
-rw-r--r--hott/Nat.thy14
3 files changed, 47 insertions, 48 deletions
diff --git a/hott/Equivalence.thy b/hott/Equivalence.thy
index 7d1f2b1..a57ed44 100644
--- a/hott/Equivalence.thy
+++ b/hott/Equivalence.thy
@@ -52,7 +52,7 @@ Lemma (def) hsym:
shows "g ~ f"
unfolding homotopy_def
proof intro
- fix x assume "x: A" then have "f x = g x"
+ fix x assuming "x: A" then have "f x = g x"
by (htpy H)
thus "g x = f x"
by (rule pathinv) fact
@@ -70,7 +70,7 @@ Lemma (def) htrans:
shows "f ~ h"
unfolding homotopy_def
proof intro
- fix x assume "x: A"
+ fix x assuming "x: A"
have *: "f x = g x" "g x = h x"
by (htpy H1, htpy H2)
show "f x = h x"
@@ -119,7 +119,7 @@ Lemma funcomp_right_htpy:
shows "(g \<circ> f) ~ (g \<circ> f')"
unfolding homotopy_def
proof (intro, reduce)
- fix x assume "x: A"
+ fix x assuming "x: A"
have *: "f x = f' x"
by (htpy H)
show "g (f x) = g (f' x)"
@@ -154,18 +154,18 @@ Corollary (def) commute_homotopy':
"H: f ~ (id A)"
shows "H (f x) = f [H x]"
proof -
- from \<open>H: f ~ id A\<close> have "H: \<Prod>x: A. f x = x"
+ from \<open>H: f ~ id A\<close> have [type]: "H: \<Prod>x: A. f x = x"
by (reduce add: homotopy_def)
- have "(id A)[H x]: f x = x"
+ have *: "(id A)[H x]: f x = x"
by (rewrite at "\<hole> = _" id_comp[symmetric],
rewrite at "_ = \<hole>" id_comp[symmetric])
have "H (f x) \<bullet> H x = H (f x) \<bullet> (id A)[H x]"
- by (rule left_whisker, transport eq: ap_id) (reduce+, refl)
+ by (rule left_whisker, fact *, transport eq: ap_id) (reduce+, refl)
also have [simplified id_comp]: "H (f x) \<bullet> (id A)[H x] = f[H x] \<bullet> H x"
by (rule commute_homotopy)
- finally have *: "{}" by this
+ finally have *: "{}" using * by this
show "H (f x) = f [H x]"
by pathcomp_cancelr (fact, typechk+)
@@ -179,7 +179,7 @@ subsection \<open>Quasi-inverses\<close>
definition "is_qinv A B f \<equiv> \<Sum>g: B \<rightarrow> A.
homotopy A (fn _. A) (g \<circ>\<^bsub>A\<^esub> f) (id A) \<times> homotopy B (fn _. B) (f \<circ>\<^bsub>B\<^esub> g) (id B)"
-lemma is_qinv_type [type]:
+Lemma is_qinv_type [type]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "is_qinv A B f: U i"
unfolding is_qinv_def
@@ -266,7 +266,7 @@ definition "is_biinv A B f \<equiv>
(\<Sum>g: B \<rightarrow> A. homotopy A (fn _. A) (g \<circ>\<^bsub>A\<^esub> f) (id A))
\<times> (\<Sum>g: B \<rightarrow> A. homotopy B (fn _. B) (f \<circ>\<^bsub>B\<^esub> g) (id B))"
-lemma is_biinv_type [type]:
+Lemma is_biinv_type [type]:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "is_biinv A B f: U i"
unfolding is_biinv_def by typechk
@@ -365,7 +365,7 @@ text \<open>
definition equivalence (infix "\<simeq>" 110)
where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. Equivalence.is_biinv A B f"
-lemma equivalence_type [type]:
+Lemma equivalence_type [type]:
assumes "A: U i" "B: U i"
shows "A \<simeq> B: U i"
unfolding equivalence_def by typechk
@@ -432,28 +432,24 @@ Lemma (def) equiv_if_equal:
\<^enum> vars A B
apply (rewrite at A in "A \<rightarrow> B" id_comp[symmetric])
using [[solve_side_conds=1]]
- apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric], fact)
+ apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric])
apply (rule transport, rule Ui_in_USi)
- apply (rule lift_universe_codomain, rule Ui_in_USi)
- apply (typechk, rule Ui_in_USi)
- by facts
+ by (rule lift_universe_codomain, rule Ui_in_USi)
\<^enum> vars A
using [[solve_side_conds=1]]
apply (subst transport_comp)
\<circ> by (rule Ui_in_USi)
\<circ> by reduce (rule in_USi_if_in_Ui)
- \<circ> by reduce (rule id_is_biinv, fact)
+ \<circ> by reduce (rule id_is_biinv)
done
done
\<^item> \<comment> \<open>Similar proof as in the first subgoal above\<close>
apply (rewrite at A in "A \<rightarrow> B" id_comp[symmetric])
using [[solve_side_conds=1]]
- apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric], fact)
+ apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric])
apply (rule transport, rule Ui_in_USi)
- apply (rule lift_universe_codomain, rule Ui_in_USi)
- apply (typechk, rule Ui_in_USi)
- by facts
+ by (rule lift_universe_codomain, rule Ui_in_USi)
done
(*Uncomment this to see all implicits from here on.
diff --git a/hott/Identity.thy b/hott/Identity.thy
index 4829b6f..247d6a4 100644
--- a/hott/Identity.thy
+++ b/hott/Identity.thy
@@ -82,7 +82,7 @@ Lemma (def) pathinv:
shows "y =\<^bsub>A\<^esub> x"
by (eq p) intro
-lemma pathinv_comp [comp]:
+Lemma pathinv_comp [comp]:
assumes "A: U i" "x: A"
shows "pathinv A x x (refl x) \<equiv> refl x"
unfolding pathinv_def by reduce
@@ -94,11 +94,11 @@ Lemma (def) pathcomp:
shows
"x =\<^bsub>A\<^esub> z"
proof (eq p)
- fix x q assume "x: A" and "q: x =\<^bsub>A\<^esub> z"
+ fix x q assuming "x: A" and "q: x =\<^bsub>A\<^esub> z"
show "x =\<^bsub>A\<^esub> z" by (eq q) refl
qed
-lemma pathcomp_comp [comp]:
+Lemma pathcomp_comp [comp]:
assumes "A: U i" "a: A"
shows "pathcomp A a a a (refl a) (refl a) \<equiv> refl a"
unfolding pathcomp_def by reduce
@@ -491,9 +491,9 @@ Lemma (def) right_whisker:
shows "p \<bullet> r = q \<bullet> r"
apply (eq r)
focus vars x s t proof -
- have "t \<bullet> refl x = t" by (rule pathcomp_refl)
- also have ".. = s" by fact
- also have ".. = s \<bullet> refl x" by (rule pathcomp_refl[symmetric])
+ have "s \<bullet> refl x = s" by (rule pathcomp_refl)
+ also have ".. = t" by fact
+ also have ".. = t \<bullet> refl x" by (rule pathcomp_refl[symmetric])
finally show "{}" by this
qed
done
@@ -505,9 +505,9 @@ Lemma (def) left_whisker:
shows "r \<bullet> p = r \<bullet> q"
apply (eq r)
focus vars x s t proof -
- have "refl x \<bullet> t = t" by (rule refl_pathcomp)
- also have ".. = s" by fact
- also have ".. = refl x \<bullet> s" by (rule refl_pathcomp[symmetric])
+ have "refl x \<bullet> s = s" by (rule refl_pathcomp)
+ also have ".. = t" by fact
+ also have ".. = refl x \<bullet> t" by (rule refl_pathcomp[symmetric])
finally show "{}" by this
qed
done
@@ -542,14 +542,13 @@ text \<open>Conditions under which horizontal path-composition is defined.\<clos
locale horiz_pathcomposable =
fixes
i A a b c p q r s
-assumes assums:
+assumes [type]:
"A: U i" "a: A" "b: A" "c: A"
"p: a =\<^bsub>A\<^esub> b" "q: a =\<^bsub>A\<^esub> b"
"r: b =\<^bsub>A\<^esub> c" "s: b =\<^bsub>A\<^esub> c"
begin
Lemma (def) horiz_pathcomp:
- notes assums
assumes "\<alpha>: p = q" "\<beta>: r = s"
shows "p \<bullet> r = q \<bullet> s"
proof (rule pathcomp)
@@ -560,7 +559,6 @@ qed typechk
text \<open>A second horizontal composition:\<close>
Lemma (def) horiz_pathcomp':
- notes assums
assumes "\<alpha>: p = q" "\<beta>: r = s"
shows "p \<bullet> r = q \<bullet> s"
proof (rule pathcomp)
@@ -572,13 +570,12 @@ notation horiz_pathcomp (infix "\<star>" 121)
notation horiz_pathcomp' (infix "\<star>''" 121)
Lemma (def) horiz_pathcomp_eq_horiz_pathcomp':
- notes assums
assumes "\<alpha>: p = q" "\<beta>: r = s"
shows "\<alpha> \<star> \<beta> = \<alpha> \<star>' \<beta>"
unfolding horiz_pathcomp_def horiz_pathcomp'_def
apply (eq \<alpha>, eq \<beta>)
focus vars p apply (eq p)
- focus vars a q by (eq q) (reduce, refl)
+ focus vars a _ _ _ r by (eq r) (reduce, refl)
done
done
@@ -597,7 +594,7 @@ Lemma \<Omega>2_alt_def:
section \<open>Eckmann-Hilton\<close>
-context fixes i A a assumes "A: U i" "a: A"
+context fixes i A a assumes [type]: "A: U i" "a: A"
begin
interpretation \<Omega>2:
@@ -619,14 +616,18 @@ Lemma (def) pathcomp_eq_horiz_pathcomp:
assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a"
shows "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>"
unfolding \<Omega>2.horiz_pathcomp_def
- using assms[unfolded \<Omega>2_alt_def]
+ (*FIXME: Definitional unfolding + normalization; shouldn't need explicit
+ unfolding*)
+ using assms[unfolded \<Omega>2_alt_def, type]
proof (reduce, rule pathinv)
\<comment> \<open>Propositional equality rewriting needs to be improved\<close>
- have "{} = refl (refl a) \<bullet> \<alpha>" by (rule pathcomp_refl)
+ have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>"
+ by (rule pathcomp_refl)
also have ".. = \<alpha>" by (rule refl_pathcomp)
finally have eq\<alpha>: "{} = \<alpha>" by this
- have "{} = refl (refl a) \<bullet> \<beta>" by (rule pathcomp_refl)
+ have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>"
+ by (rule pathcomp_refl)
also have ".. = \<beta>" by (rule refl_pathcomp)
finally have eq\<beta>: "{} = \<beta>" by this
@@ -640,13 +641,15 @@ Lemma (def) pathcomp_eq_horiz_pathcomp':
assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a"
shows "\<alpha> \<star>' \<beta> = \<beta> \<bullet> \<alpha>"
unfolding \<Omega>2.horiz_pathcomp'_def
- using assms[unfolded \<Omega>2_alt_def]
+ using assms[unfolded \<Omega>2_alt_def, type]
proof reduce
- have "{} = refl (refl a) \<bullet> \<beta>" by (rule pathcomp_refl)
+ have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>"
+ by (rule pathcomp_refl)
also have ".. = \<beta>" by (rule refl_pathcomp)
finally have eq\<beta>: "{} = \<beta>" by this
- have "{} = refl (refl a) \<bullet> \<alpha>" by (rule pathcomp_refl)
+ have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>"
+ by (rule pathcomp_refl)
also have ".. = \<alpha>" by (rule refl_pathcomp)
finally have eq\<alpha>: "{} = \<alpha>" by this
@@ -659,7 +662,7 @@ Lemma (def) pathcomp_eq_horiz_pathcomp':
Lemma (def) eckmann_hilton:
assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a"
shows "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>"
- using assms[unfolded \<Omega>2_alt_def]
+ using assms[unfolded \<Omega>2_alt_def, type]
proof -
have "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>"
by (rule pathcomp_eq_horiz_pathcomp)
diff --git a/hott/Nat.thy b/hott/Nat.thy
index 716703a..f45387c 100644
--- a/hott/Nat.thy
+++ b/hott/Nat.thy
@@ -62,17 +62,17 @@ subsection \<open>Addition\<close>
definition add (infixl "+" 120) where "m + n \<equiv> NatRec Nat m (K suc) n"
-lemma add_type [type]:
+Lemma add_type [type]:
assumes "m: Nat" "n: Nat"
shows "m + n: Nat"
unfolding add_def by typechk
-lemma add_zero [comp]:
+Lemma add_zero [comp]:
assumes "m: Nat"
shows "m + 0 \<equiv> m"
unfolding add_def by reduce
-lemma add_suc [comp]:
+Lemma add_suc [comp]:
assumes "m: Nat" "n: Nat"
shows "m + suc n \<equiv> suc (m + n)"
unfolding add_def by reduce
@@ -123,22 +123,22 @@ subsection \<open>Multiplication\<close>
definition mul (infixl "*" 121) where "m * n \<equiv> NatRec Nat 0 (K $ add m) n"
-lemma mul_type [type]:
+Lemma mul_type [type]:
assumes "m: Nat" "n: Nat"
shows "m * n: Nat"
unfolding mul_def by typechk
-lemma mul_zero [comp]:
+Lemma mul_zero [comp]:
assumes "n: Nat"
shows "n * 0 \<equiv> 0"
unfolding mul_def by reduce
-lemma mul_one [comp]:
+Lemma mul_one [comp]:
assumes "n: Nat"
shows "n * 1 \<equiv> n"
unfolding mul_def by reduce
-lemma mul_suc [comp]:
+Lemma mul_suc [comp]:
assumes "m: Nat" "n: Nat"
shows "m * suc n \<equiv> m + m * n"
unfolding mul_def by reduce