diff options
Diffstat (limited to 'hott')
-rw-r--r-- | hott/Equivalence.thy | 58 | ||||
-rw-r--r-- | hott/Identity.thy | 100 | ||||
-rw-r--r-- | hott/Nat.thy | 60 |
3 files changed, 105 insertions, 113 deletions
diff --git a/hott/Equivalence.thy b/hott/Equivalence.thy index 379dc81..9fe11a7 100644 --- a/hott/Equivalence.thy +++ b/hott/Equivalence.thy @@ -88,12 +88,12 @@ lemmas Lemma id_funcomp_htpy: assumes "A: U i" "B: U i" "f: A \<rightarrow> B" shows "homotopy_refl A f: (id B) \<circ> f ~ f" - by reduce + by compute Lemma funcomp_id_htpy: assumes "A: U i" "B: U i" "f: A \<rightarrow> B" shows "homotopy_refl A f: f \<circ> (id A) ~ f" - by reduce + by compute Lemma funcomp_left_htpy: assumes @@ -105,7 +105,7 @@ Lemma funcomp_left_htpy: "H: g ~ g'" shows "(g \<circ> f) ~ (g' \<circ> f)" unfolding homotopy_def - apply (intro, reduce) + apply (intro, compute) apply (htpy H) done @@ -118,12 +118,12 @@ Lemma funcomp_right_htpy: "H: f ~ f'" shows "(g \<circ> f) ~ (g \<circ> f')" unfolding homotopy_def - proof (intro, reduce) + proof (intro, compute) fix x assuming "x: A" have *: "f x = f' x" by (htpy H) show "g (f x) = g (f' x)" - by (transport eq: *) refl + by (rewr eq: *) refl qed method lhtpy = rule funcomp_left_htpy[rotated 6] @@ -139,8 +139,8 @@ Lemma (def) commute_homotopy: shows "(H x) \<bullet> g[p] = f[p] \<bullet> (H y)" using \<open>H:_\<close> unfolding homotopy_def - apply (eq p, reduce) - apply (transport eq: pathcomp_refl, transport eq: refl_pathcomp) + apply (eq p, compute) + apply (rewr eq: pathcomp_refl, rewr eq: refl_pathcomp) by refl Corollary (def) commute_homotopy': @@ -151,21 +151,13 @@ Corollary (def) commute_homotopy': "H: f ~ (id A)" shows "H (f x) = f [H x]" proof - - (* Rewrite the below proof - have *: "H (f x) \<bullet> (id A)[H x] = f[H x] \<bullet> H x" - using \<open>H:_\<close> unfolding homotopy_def by (rule commute_homotopy) - - thus "H (f x) = f[H x]" - apply (pathcomp_cancelr) - ... - *) - (*FUTURE: Because we don't have very good normalization integrated into + (*FUTURE: Because we don't have very good normalization integrated into things yet, we need to manually unfold the type of H.*) from \<open>H: f ~ id A\<close> have [type]: "H: \<Prod>x: A. f x = x" - by (reduce add: homotopy_def) + by (compute add: homotopy_def) have "H (f x) \<bullet> H x = H (f x) \<bullet> (id A)[H x]" - by (rule left_whisker, transport eq: ap_id, refl) + by (rule left_whisker, rewr eq: ap_id, refl) also have [simplified id_comp]: "H (f x) \<bullet> (id A)[H x] = f[H x] \<bullet> H x" by (rule commute_homotopy) finally have "?" by this @@ -198,7 +190,7 @@ Lemma (def) id_is_qinv: unfolding is_qinv_def proof intro show "id A: A \<rightarrow> A" by typechk - qed (reduce, intro; refl) + qed (compute, intro; refl) Lemma is_qinvI: assumes @@ -245,17 +237,17 @@ Lemma (def) funcomp_is_qinv: \<^item> proof intro show "(finv \<circ> ginv) \<circ> g \<circ> f ~ id A" proof - - have "(finv \<circ> ginv) \<circ> g \<circ> f ~ finv \<circ> (ginv \<circ> g) \<circ> f" by reduce refl + have "(finv \<circ> ginv) \<circ> g \<circ> f ~ finv \<circ> (ginv \<circ> g) \<circ> f" by compute refl also have ".. ~ finv \<circ> id B \<circ> f" by (rhtpy, lhtpy) fact - also have ".. ~ id A" by reduce fact + also have ".. ~ id A" by compute fact finally show "?" by this qed show "(g \<circ> f) \<circ> finv \<circ> ginv ~ id C" proof - - have "(g \<circ> f) \<circ> finv \<circ> ginv ~ g \<circ> (f \<circ> finv) \<circ> ginv" by reduce refl + have "(g \<circ> f) \<circ> finv \<circ> ginv ~ g \<circ> (f \<circ> finv) \<circ> ginv" by compute refl also have ".. ~ g \<circ> id B \<circ> ginv" by (rhtpy, lhtpy) fact - also have ".. ~ id C" by reduce fact + also have ".. ~ id C" by compute fact finally show "?" by this qed qed @@ -317,10 +309,10 @@ Lemma (def) is_qinv_if_is_biinv: \<^item> by (fact \<open>g: _\<close>) \<^item> by (fact \<open>H1: _\<close>) \<^item> proof - - have "g ~ g \<circ> (id B)" by reduce refl + have "g ~ g \<circ> (id B)" by compute refl also have ".. ~ g \<circ> f \<circ> h" by rhtpy (rule \<open>H2:_\<close>[symmetric]) - also have ".. ~ (id A) \<circ> h" by (rewrite funcomp_assoc[symmetric]) (lhtpy, fact) - also have ".. ~ h" by reduce refl + also have ".. ~ (id A) \<circ> h" by (comp funcomp_assoc[symmetric]) (lhtpy, fact) + also have ".. ~ h" by compute refl finally have "g ~ h" by this then have "f \<circ> g ~ f \<circ> h" by (rhtpy, this) also note \<open>H2:_\<close> @@ -420,24 +412,24 @@ Lemma (def) equiv_if_equal: apply intro defer \<^item> apply (eq p) \<^enum> vars A B - apply (rewrite at A in "A \<rightarrow> B" id_comp[symmetric]) + apply (comp at A in "A \<rightarrow> B" id_comp[symmetric]) using [[solve_side_conds=1]] - apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric]) + apply (comp at B in "_ \<rightarrow> B" id_comp[symmetric]) apply (rule transport, rule Ui_in_USi) by (rule lift_universe_codomain, rule Ui_in_USi) \<^enum> vars A using [[solve_side_conds=1]] - apply (rewrite transport_comp) + apply (comp transport_comp) \<circ> by (rule Ui_in_USi) - \<circ> by reduce (rule U_lift) - \<circ> by reduce (rule id_is_biinv) + \<circ> by compute (rule U_lift) + \<circ> by compute (rule id_is_biinv) done done \<^item> \<comment> \<open>Similar proof as in the first subgoal above\<close> - apply (rewrite at A in "A \<rightarrow> B" id_comp[symmetric]) + apply (comp at A in "A \<rightarrow> B" id_comp[symmetric]) using [[solve_side_conds=1]] - apply (rewrite at B in "_ \<rightarrow> B" id_comp[symmetric]) + apply (comp at B in "_ \<rightarrow> B" id_comp[symmetric]) apply (rule transport, rule Ui_in_USi) by (rule lift_universe_codomain, rule Ui_in_USi) done diff --git a/hott/Identity.thy b/hott/Identity.thy index 0a31dc7..caab2e3 100644 --- a/hott/Identity.thy +++ b/hott/Identity.thy @@ -85,7 +85,7 @@ Lemma (def) pathinv: Lemma pathinv_comp [comp]: assumes "A: U i" "x: A" shows "pathinv A x x (refl x) \<equiv> refl x" - unfolding pathinv_def by reduce + unfolding pathinv_def by compute Lemma (def) pathcomp: assumes @@ -101,7 +101,7 @@ Lemma (def) pathcomp: Lemma pathcomp_comp [comp]: assumes "A: U i" "a: A" shows "pathcomp A a a a (refl a) (refl a) \<equiv> refl a" - unfolding pathcomp_def by reduce + unfolding pathcomp_def by compute method pathcomp for p q :: o = rule pathcomp[where ?p=p and ?q=q] @@ -137,12 +137,12 @@ section \<open>Basic propositional equalities\<close> Lemma (def) refl_pathcomp: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "(refl x) \<bullet> p = p" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) pathcomp_refl: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "p \<bullet> (refl y) = p" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) definition [implicit]: "lu p \<equiv> refl_pathcomp {} {} {} p" definition [implicit]: "ru p \<equiv> pathcomp_refl {} {} {} p" @@ -154,27 +154,27 @@ translations Lemma lu_refl [comp]: assumes "A: U i" "x: A" shows "lu (refl x) \<equiv> refl (refl x)" - unfolding refl_pathcomp_def by reduce + unfolding refl_pathcomp_def by compute Lemma ru_refl [comp]: assumes "A: U i" "x: A" shows "ru (refl x) \<equiv> refl (refl x)" - unfolding pathcomp_refl_def by reduce + unfolding pathcomp_refl_def by compute Lemma (def) inv_pathcomp: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "p\<inverse> \<bullet> p = refl y" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) pathcomp_inv: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "p \<bullet> p\<inverse> = refl x" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) pathinv_pathinv: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "p\<inverse>\<inverse> = p" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) pathcomp_assoc: assumes @@ -187,7 +187,7 @@ Lemma (def) pathcomp_assoc: proof (eq q) fix x r assuming "x: A" "r: x = w" show "refl x \<bullet> (refl x \<bullet> r) = refl x \<bullet> refl x \<bullet> r" - by (eq r) (reduce, refl) + by (eq r) (compute, refl) qed qed @@ -211,7 +211,7 @@ translations "f[p]" \<leftharpoondown> "CONST ap A B x y f p" Lemma ap_refl [comp]: assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A" shows "f[refl x] \<equiv> refl (f x)" - unfolding ap_def by reduce + unfolding ap_def by compute Lemma (def) ap_pathcomp: assumes @@ -224,7 +224,7 @@ Lemma (def) ap_pathcomp: proof (eq p) fix x q assuming "x: A" "q: x = z" show "f[refl x \<bullet> q] = f[refl x] \<bullet> f[q]" - by (eq q) (reduce, refl) + by (eq q) (compute, refl) qed Lemma (def) ap_pathinv: @@ -234,7 +234,7 @@ Lemma (def) ap_pathinv: "f: A \<rightarrow> B" "p: x = y" shows "f[p\<inverse>] = f[p]\<inverse>" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) ap_funcomp: assumes @@ -244,14 +244,14 @@ Lemma (def) ap_funcomp: "p: x = y" shows "(g \<circ> f)[p] = g[f[p]]" apply (eq p) - \<^item> by reduce - \<^item> by reduce refl + \<^item> by compute + \<^item> by compute refl done Lemma (def) ap_id: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "(id A)[p] = p" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) section \<open>Transport\<close> @@ -276,7 +276,7 @@ Lemma transport_comp [comp]: "A: U i" "\<And>x. x: A \<Longrightarrow> P x: U i" shows "transp P (refl a) \<equiv> id (P a)" - unfolding transport_def by reduce + unfolding transport_def by compute Lemma apply_transport: assumes @@ -287,7 +287,7 @@ Lemma apply_transport: shows "transp P p\<inverse> u: P y" by typechk -method transport uses eq = (rule apply_transport[OF _ _ _ _ eq]) +method rewr uses eq = (rule apply_transport[OF _ _ _ _ eq]) Lemma (def) pathcomp_cancel_left: assumes @@ -297,13 +297,13 @@ Lemma (def) pathcomp_cancel_left: shows "q = r" proof - have "q = (p\<inverse> \<bullet> p) \<bullet> q" - by (transport eq: inv_pathcomp, transport eq: refl_pathcomp) refl + by (rewr eq: inv_pathcomp, rewr eq: refl_pathcomp) refl also have ".. = p\<inverse> \<bullet> (p \<bullet> r)" - by (transport eq: pathcomp_assoc[symmetric], transport eq: \<open>\<alpha>:_\<close>) refl + by (rewr eq: pathcomp_assoc[symmetric], rewr eq: \<open>\<alpha>:_\<close>) refl also have ".. = r" - by (transport eq: pathcomp_assoc, - transport eq: inv_pathcomp, - transport eq: refl_pathcomp) refl + by (rewr eq: pathcomp_assoc, + rewr eq: inv_pathcomp, + rewr eq: refl_pathcomp) refl finally show "?" by this qed @@ -315,14 +315,14 @@ Lemma (def) pathcomp_cancel_right: shows "p = q" proof - have "p = p \<bullet> r \<bullet> r\<inverse>" - by (transport eq: pathcomp_assoc[symmetric], - transport eq: pathcomp_inv, - transport eq: pathcomp_refl) refl + by (rewr eq: pathcomp_assoc[symmetric], + rewr eq: pathcomp_inv, + rewr eq: pathcomp_refl) refl also have ".. = q" - by (transport eq: \<open>\<alpha>:_\<close>, - transport eq: pathcomp_assoc[symmetric], - transport eq: pathcomp_inv, - transport eq: pathcomp_refl) refl + by (rewr eq: \<open>\<alpha>:_\<close>, + rewr eq: pathcomp_assoc[symmetric], + rewr eq: pathcomp_inv, + rewr eq: pathcomp_refl) refl finally show "?" by this qed @@ -336,7 +336,7 @@ Lemma (def) transport_left_inv: "x: A" "y: A" "p: x = y" shows "(transp P p\<inverse>) \<circ> (transp P p) = id (P x)" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) transport_right_inv: assumes @@ -345,7 +345,7 @@ Lemma (def) transport_right_inv: "x: A" "y: A" "p: x = y" shows "(transp P p) \<circ> (transp P p\<inverse>) = id (P y)" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) transport_pathcomp: assumes @@ -359,7 +359,7 @@ proof (eq p) fix x q u assuming "x: A" "q: x = z" "u: P x" show "transp P q (transp P (refl x) u) = transp P ((refl x) \<bullet> q) u" - by (eq q) (reduce, refl) + by (eq q) (compute, refl) qed Lemma (def) transport_compose_typefam: @@ -371,7 +371,7 @@ Lemma (def) transport_compose_typefam: "p: x = y" "u: P (f x)" shows "transp (fn x. P (f x)) p u = transp P f[p] u" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) transport_function_family: assumes @@ -383,7 +383,7 @@ Lemma (def) transport_function_family: "u: P x" "p: x = y" shows "transp Q p ((f x) u) = (f y) (transp P p u)" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) Lemma (def) transport_const: assumes @@ -391,7 +391,7 @@ Lemma (def) transport_const: "x: A" "y: A" "p: x = y" shows "\<Prod>b: B. transp (fn _. B) p b = b" - by intro (eq p, reduce, refl) + by intro (eq p, compute, refl) definition transport_const_i ("transp'_c") where [implicit]: "transp_c B p \<equiv> transport_const {} B {} {} p" @@ -403,7 +403,7 @@ Lemma transport_const_comp [comp]: "x: A" "b: B" "A: U i" "B: U i" shows "transp_c B (refl x) b \<equiv> refl b" - unfolding transport_const_def by reduce + unfolding transport_const_def by compute Lemma (def) pathlift: assumes @@ -413,7 +413,7 @@ Lemma (def) pathlift: "p: x = y" "u: P x" shows "<x, u> = <y, transp P p u>" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) definition pathlift_i ("lift") where [implicit]: "lift P p u \<equiv> pathlift {} P {} {} p u" @@ -427,7 +427,7 @@ Lemma pathlift_comp [comp]: "\<And>x. x: A \<Longrightarrow> P x: U i" "A: U i" shows "lift P (refl x) u \<equiv> refl <x, u>" - unfolding pathlift_def by reduce + unfolding pathlift_def by compute Lemma (def) pathlift_fst: assumes @@ -437,7 +437,7 @@ Lemma (def) pathlift_fst: "u: P x" "p: x = y" shows "fst[lift P p u] = p" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) section \<open>Dependent paths\<close> @@ -450,7 +450,7 @@ Lemma (def) apd: "x: A" "y: A" "p: x = y" shows "transp P p (f x) = f y" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) definition apd_i ("apd") where [implicit]: "apd f p \<equiv> Identity.apd {} {} f {} {} p" @@ -464,7 +464,7 @@ Lemma dependent_map_comp [comp]: "A: U i" "\<And>x. x: A \<Longrightarrow> P x: U i" shows "apd f (refl x) \<equiv> refl (f x)" - unfolding apd_def by reduce + unfolding apd_def by compute Lemma (def) apd_ap: assumes @@ -473,7 +473,7 @@ Lemma (def) apd_ap: "x: A" "y: A" "p: x = y" shows "apd f p = transp_c B p (f x) \<bullet> f[p]" - by (eq p) (reduce, refl) + by (eq p) (compute, refl) section \<open>Whiskering\<close> @@ -519,12 +519,12 @@ translations Lemma whisker_refl [comp]: assumes "A: U i" "a: A" "b: A" "p: a = b" "q: a = b" "\<alpha>: p = q" shows "\<alpha> \<bullet>\<^sub>r (refl b) \<equiv> ru p \<bullet> \<alpha> \<bullet> (ru q)\<inverse>" - unfolding right_whisker_def by reduce + unfolding right_whisker_def by compute Lemma refl_whisker [comp]: assumes "A: U i" "a: A" "b: A" "p: a = b" "q: a = b" "\<alpha>: p = q" shows "(refl a) \<bullet>\<^sub>l \<alpha> \<equiv> (lu p) \<bullet> \<alpha> \<bullet> (lu q)\<inverse>" - unfolding left_whisker_def by reduce + unfolding left_whisker_def by compute method left_whisker = (rule left_whisker) method right_whisker = (rule right_whisker) @@ -569,7 +569,7 @@ Lemma (def) horiz_pathcomp_eq_horiz_pathcomp': unfolding horiz_pathcomp_def horiz_pathcomp'_def apply (eq \<alpha>, eq \<beta>) focus vars p apply (eq p) - focus vars a _ _ _ r by (eq r) (reduce, refl) + focus vars a _ _ _ r by (eq r) (compute, refl) done done @@ -604,14 +604,14 @@ Lemma and horiz_pathcomp'_type [type]: "\<alpha> \<star>' \<beta>: \<Omega>2 A a" using assms unfolding \<Omega>2.horiz_pathcomp_def \<Omega>2.horiz_pathcomp'_def \<Omega>2_def - by reduce+ + by compute+ Lemma (def) pathcomp_eq_horiz_pathcomp: assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" shows "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>" unfolding \<Omega>2.horiz_pathcomp_def using assms[unfolded \<Omega>2_def, type] (*TODO: A `noting` keyword that puts the noted theorem into [type]*) - proof (reduce, rule pathinv) + proof (compute, rule pathinv) have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>" by (rule pathcomp_refl) also have ".. = \<alpha>" by (rule refl_pathcomp) @@ -633,7 +633,7 @@ Lemma (def) pathcomp_eq_horiz_pathcomp': shows "\<alpha> \<star>' \<beta> = \<beta> \<bullet> \<alpha>" unfolding \<Omega>2.horiz_pathcomp'_def using assms[unfolded \<Omega>2_def, type] - proof reduce + proof compute have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>" by (rule pathcomp_refl) also have ".. = \<beta>" by (rule refl_pathcomp) @@ -660,7 +660,7 @@ Lemma (def) eckmann_hilton: also have [simplified comp]: ".. = \<alpha> \<star>' \<beta>" \<comment> \<open>Danger! Inferred implicit has an equivalent form but needs to be manually simplified.\<close> - by (transport eq: \<Omega>2.horiz_pathcomp_eq_horiz_pathcomp') refl + by (rewr eq: \<Omega>2.horiz_pathcomp_eq_horiz_pathcomp') refl also have ".. = \<beta> \<bullet> \<alpha>" by (rule pathcomp_eq_horiz_pathcomp') finally show "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>" diff --git a/hott/Nat.thy b/hott/Nat.thy index 1aa7932..33a5d0a 100644 --- a/hott/Nat.thy +++ b/hott/Nat.thy @@ -70,27 +70,27 @@ Lemma add_type [type]: Lemma add_zero [comp]: assumes "m: Nat" shows "m + 0 \<equiv> m" - unfolding add_def by reduce + unfolding add_def by compute Lemma add_suc [comp]: assumes "m: Nat" "n: Nat" shows "m + suc n \<equiv> suc (m + n)" - unfolding add_def by reduce + unfolding add_def by compute Lemma (def) zero_add: assumes "n: Nat" shows "0 + n = n" apply (elim n) - \<^item> by (reduce; intro) - \<^item> vars _ ih by reduce (eq ih; refl) + \<^item> by (compute; intro) + \<^item> vars _ ih by compute (eq ih; refl) done Lemma (def) suc_add: assumes "m: Nat" "n: Nat" shows "suc m + n = suc (m + n)" apply (elim n) - \<^item> by reduce refl - \<^item> vars _ ih by reduce (eq ih; refl) + \<^item> by compute refl + \<^item> vars _ ih by compute (eq ih; refl) done Lemma (def) suc_eq: @@ -102,19 +102,19 @@ Lemma (def) add_assoc: assumes "l: Nat" "m: Nat" "n: Nat" shows "l + (m + n) = l + m+ n" apply (elim n) - \<^item> by reduce intro - \<^item> vars _ ih by reduce (eq ih; refl) + \<^item> by compute intro + \<^item> vars _ ih by compute (eq ih; refl) done Lemma (def) add_comm: assumes "m: Nat" "n: Nat" shows "m + n = n + m" apply (elim n) - \<^item> by (reduce; rule zero_add[symmetric]) + \<^item> by (compute; rule zero_add[symmetric]) \<^item> vars n ih - proof reduce + proof compute have "suc (m + n) = suc (n + m)" by (eq ih) refl - also have ".. = suc n + m" by (transport eq: suc_add) refl + also have ".. = suc n + m" by (rewr eq: suc_add) refl finally show "?" by this qed done @@ -131,27 +131,27 @@ Lemma mul_type [type]: Lemma mul_zero [comp]: assumes "n: Nat" shows "n * 0 \<equiv> 0" - unfolding mul_def by reduce + unfolding mul_def by compute Lemma mul_one [comp]: assumes "n: Nat" shows "n * 1 \<equiv> n" - unfolding mul_def by reduce + unfolding mul_def by compute Lemma mul_suc [comp]: assumes "m: Nat" "n: Nat" shows "m * suc n \<equiv> m + m * n" - unfolding mul_def by reduce + unfolding mul_def by compute Lemma (def) zero_mul: assumes "n: Nat" shows "0 * n = 0" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof reduce + proof compute have "0 + 0 * n = 0 + 0 " by (eq ih) refl - also have ".. = 0" by reduce refl + also have ".. = 0" by compute refl finally show "?" by this qed done @@ -160,11 +160,11 @@ Lemma (def) suc_mul: assumes "m: Nat" "n: Nat" shows "suc m * n = m * n + n" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof (reduce, transport eq: \<open>ih:_\<close>) + proof (compute, rewr eq: \<open>ih:_\<close>) have "suc m + (m * n + n) = suc (m + ?)" by (rule suc_add) - also have ".. = suc (m + m * n + n)" by (transport eq: add_assoc) refl + also have ".. = suc (m + m * n + n)" by (rewr eq: add_assoc) refl finally show "?" by this qed done @@ -173,13 +173,13 @@ Lemma (def) mul_dist_add: assumes "l: Nat" "m: Nat" "n: Nat" shows "l * (m + n) = l * m + l * n" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof reduce + proof compute have "l + l * (m + n) = l + (l * m + l * n)" by (eq ih) refl also have ".. = l + l * m + l * n" by (rule add_assoc) - also have ".. = l * m + l + l * n" by (transport eq: add_comm) refl - also have ".. = l * m + (l + l * n)" by (transport eq: add_assoc) refl + also have ".. = l * m + l + l * n" by (rewr eq: add_comm) refl + also have ".. = l * m + (l + l * n)" by (rewr eq: add_assoc) refl finally show "?" by this qed done @@ -188,11 +188,11 @@ Lemma (def) mul_assoc: assumes "l: Nat" "m: Nat" "n: Nat" shows "l * (m * n) = l * m * n" apply (elim n) - \<^item> by reduce refl + \<^item> by compute refl \<^item> vars n ih - proof reduce + proof compute have "l * (m + m * n) = l * m + l * (m * n)" by (rule mul_dist_add) - also have ".. = l * m + l * m * n" by (transport eq: \<open>ih:_\<close>) refl + also have ".. = l * m + l * m * n" by (rewr eq: \<open>ih:_\<close>) refl finally show "?" by this qed done @@ -201,12 +201,12 @@ Lemma (def) mul_comm: assumes "m: Nat" "n: Nat" shows "m * n = n * m" apply (elim n) - \<^item> by reduce (transport eq: zero_mul, refl) + \<^item> by compute (rewr eq: zero_mul, refl) \<^item> vars n ih - proof (reduce, rule pathinv) + proof (compute, rule pathinv) have "suc n * m = n * m + m" by (rule suc_mul) also have ".. = m + m * n" - by (transport eq: \<open>ih:_\<close>, transport eq: add_comm) refl + by (rewr eq: \<open>ih:_\<close>, rewr eq: add_comm) refl finally show "?" by this qed done |