aboutsummaryrefslogtreecommitdiff
path: root/hott/Identity.thy
diff options
context:
space:
mode:
Diffstat (limited to 'hott/Identity.thy')
-rw-r--r--hott/Identity.thy47
1 files changed, 18 insertions, 29 deletions
diff --git a/hott/Identity.thy b/hott/Identity.thy
index 247d6a4..dc27ee8 100644
--- a/hott/Identity.thy
+++ b/hott/Identity.thy
@@ -242,7 +242,7 @@ Lemma (def) ap_funcomp:
"x: A" "y: A"
"f: A \<rightarrow> B" "g: B \<rightarrow> C"
"p: x = y"
- shows "(g \<circ> f)[p] = g[f[p]]" thm ap
+ shows "(g \<circ> f)[p] = g[f[p]]"
apply (eq p)
\<^item> by reduce
\<^item> by reduce refl
@@ -251,10 +251,7 @@ Lemma (def) ap_funcomp:
Lemma (def) ap_id:
assumes "A: U i" "x: A" "y: A" "p: x = y"
shows "(id A)[p] = p"
- apply (eq p)
- \<^item> by reduce
- \<^item> by reduce refl
- done
+ by (eq p) (reduce, refl)
section \<open>Transport\<close>
@@ -303,7 +300,7 @@ Lemma (def) pathcomp_cancel_left:
by (transport eq: inv_pathcomp, transport eq: refl_pathcomp) refl
also have ".. = p\<inverse> \<bullet> (p \<bullet> r)"
by (transport eq: pathcomp_assoc[symmetric], transport eq: \<open>\<alpha>:_\<close>) refl
- also have ".. = r" thm inv_pathcomp
+ also have ".. = r"
by (transport eq: pathcomp_assoc,
transport eq: inv_pathcomp,
transport eq: refl_pathcomp) refl
@@ -339,7 +336,7 @@ Lemma (def) transport_left_inv:
"x: A" "y: A"
"p: x = y"
shows "(trans P p\<inverse>) \<circ> (trans P p) = id (P x)"
- by (eq p) (reduce; refl)
+ by (eq p) (reduce, refl)
Lemma (def) transport_right_inv:
assumes
@@ -440,10 +437,7 @@ Lemma (def) pathlift_fst:
"u: P x"
"p: x = y"
shows "fst[lift P p u] = p"
- apply (eq p)
- \<^item> by reduce
- \<^item> by reduce refl
- done
+ by (eq p) (reduce, refl)
section \<open>Dependent paths\<close>
@@ -585,10 +579,10 @@ end
section \<open>Loop space\<close>
definition \<Omega> where "\<Omega> A a \<equiv> a =\<^bsub>A\<^esub> a"
-definition \<Omega>2 where "\<Omega>2 A a \<equiv> \<Omega> (\<Omega> A a) (refl a)"
+definition \<Omega>2 where "\<Omega>2 A a \<equiv> refl a =\<^bsub>a =\<^bsub>A\<^esub> a\<^esub> refl a"
-Lemma \<Omega>2_alt_def:
- "\<Omega>2 A a \<equiv> refl a = refl a"
+Lemma \<Omega>2_\<Omega>_of_\<Omega>:
+ "\<Omega>2 A a \<equiv> \<Omega> (\<Omega> A a) (refl a)"
unfolding \<Omega>2_def \<Omega>_def .
@@ -604,23 +598,20 @@ interpretation \<Omega>2:
notation \<Omega>2.horiz_pathcomp (infix "\<star>" 121)
notation \<Omega>2.horiz_pathcomp' (infix "\<star>''" 121)
-Lemma [type]:
+Lemma
assumes "\<alpha>: \<Omega>2 A a" and "\<beta>: \<Omega>2 A a"
- shows horiz_pathcomp_type: "\<alpha> \<star> \<beta>: \<Omega>2 A a"
- and horiz_pathcomp'_type: "\<alpha> \<star>' \<beta>: \<Omega>2 A a"
+ shows horiz_pathcomp_type [type]: "\<alpha> \<star> \<beta>: \<Omega>2 A a"
+ and horiz_pathcomp'_type [type]: "\<alpha> \<star>' \<beta>: \<Omega>2 A a"
using assms
- unfolding \<Omega>2.horiz_pathcomp_def \<Omega>2.horiz_pathcomp'_def \<Omega>2_alt_def
+ unfolding \<Omega>2.horiz_pathcomp_def \<Omega>2.horiz_pathcomp'_def \<Omega>2_def
by reduce+
Lemma (def) pathcomp_eq_horiz_pathcomp:
assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a"
shows "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>"
unfolding \<Omega>2.horiz_pathcomp_def
- (*FIXME: Definitional unfolding + normalization; shouldn't need explicit
- unfolding*)
- using assms[unfolded \<Omega>2_alt_def, type]
+ using assms[unfolded \<Omega>2_def, type] (*TODO: A `noting` keyword that puts the noted theorem into [type]*)
proof (reduce, rule pathinv)
- \<comment> \<open>Propositional equality rewriting needs to be improved\<close>
have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>"
by (rule pathcomp_refl)
also have ".. = \<alpha>" by (rule refl_pathcomp)
@@ -641,7 +632,7 @@ Lemma (def) pathcomp_eq_horiz_pathcomp':
assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a"
shows "\<alpha> \<star>' \<beta> = \<beta> \<bullet> \<alpha>"
unfolding \<Omega>2.horiz_pathcomp'_def
- using assms[unfolded \<Omega>2_alt_def, type]
+ using assms[unfolded \<Omega>2_def, type]
proof reduce
have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>"
by (rule pathcomp_refl)
@@ -662,20 +653,18 @@ Lemma (def) pathcomp_eq_horiz_pathcomp':
Lemma (def) eckmann_hilton:
assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a"
shows "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>"
- using assms[unfolded \<Omega>2_alt_def, type]
+ using \<Omega>2_def[comp]
proof -
have "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>"
by (rule pathcomp_eq_horiz_pathcomp)
also have [simplified comp]: ".. = \<alpha> \<star>' \<beta>"
- \<comment> \<open>Danger, Will Robinson! (Inferred implicit has an equivalent form but
- needs to be manually simplified.)\<close>
+ \<comment> \<open>Danger! Inferred implicit has an equivalent form but needs to be
+ manually simplified.\<close>
by (transport eq: \<Omega>2.horiz_pathcomp_eq_horiz_pathcomp') refl
also have ".. = \<beta> \<bullet> \<alpha>"
by (rule pathcomp_eq_horiz_pathcomp')
finally show "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>"
- by (this; reduce add: \<Omega>2_alt_def[symmetric])
- \<comment> \<open>TODO: The finishing call to `reduce` should be unnecessary with some
- kind of definitional unfolding.\<close>
+ by this
qed
end