diff options
Diffstat (limited to 'ex')
-rw-r--r-- | ex/Methods.thy | 29 | ||||
-rw-r--r-- | ex/Synthesis.thy | 10 |
2 files changed, 34 insertions, 5 deletions
diff --git a/ex/Methods.thy b/ex/Methods.thy index 699d620..871964f 100644 --- a/ex/Methods.thy +++ b/ex/Methods.thy @@ -10,6 +10,8 @@ theory Methods begin +text "Wellformedness results, metatheorems written into the object theory using the wellformedness rules." + lemma assumes "A : U(i)" "B: A \<longrightarrow> U(i)" "\<And>x. x : A \<Longrightarrow> C x: B x \<longrightarrow> U(i)" shows "\<Sum>x:A. \<Prod>y:B x. \<Sum>z:C x y. \<Prod>w:A. x =\<^sub>A w : U(i)" @@ -45,4 +47,31 @@ apply (rule Sum_intro) apply assumption+ done + +text " + Function application. + The proof methods are not yet automated as well as I would like; we still often have to explicitly specify types. +" + +lemma + assumes "A: U(i)" "a: A" + shows "(\<^bold>\<lambda>x. <x,0>)`a \<equiv> <a,0>" +proof compute + show "\<And>x. x: A \<Longrightarrow> <x,0>: A \<times> \<nat>" by simple +qed (simple lems: assms) + + +lemma + assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "a: A" "b: B(a)" + shows "(\<^bold>\<lambda>x y. <x,y>)`a`b \<equiv> <a,b>" +proof compute + show "\<And>x. x: A \<Longrightarrow> \<^bold>\<lambda>y. <x,y>: \<Prod>y:B(x). \<Sum>x:A. B(x)" by (simple lems: assms) + + show "(\<^bold>\<lambda>b. <a,b>)`b \<equiv> <a, b>" + proof compute + show "\<And>b. b: B(a) \<Longrightarrow> <a, b>: \<Sum>x:A. B(x)" by (simple lems: assms) + qed fact +qed fact + + end
\ No newline at end of file diff --git a/ex/Synthesis.thy b/ex/Synthesis.thy index 48d762c..ef6673c 100644 --- a/ex/Synthesis.thy +++ b/ex/Synthesis.thy @@ -33,8 +33,8 @@ text " " schematic_goal "?p`0 \<equiv> 0" and "\<And>n. n: \<nat> \<Longrightarrow> (?p`(succ n)) \<equiv> n" -apply (subst comp) -prefer 4 apply (subst comp) +apply compute +prefer 4 apply compute prefer 3 apply (rule Nat_rules) apply (rule Nat_rules | assumption)+ done @@ -51,7 +51,7 @@ lemma pred_type: "pred: \<nat> \<rightarrow> \<nat>" unfolding pred_def by simpl lemma pred_props: "<refl(0), \<^bold>\<lambda>n. refl(n)>: ((pred`0) =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. (pred`(succ n)) =\<^sub>\<nat> n)" proof (simple lems: pred_type) have *: "pred`0 \<equiv> 0" unfolding pred_def - proof (subst comp) + proof compute show "\<And>n. n: \<nat> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>a b. a) n n: \<nat>" by simple show "ind\<^sub>\<nat> (\<lambda>a b. a) 0 0 \<equiv> 0" proof (rule Nat_comps) @@ -63,10 +63,10 @@ proof (simple lems: pred_type) show "\<^bold>\<lambda>n. refl(n): \<Prod>n:\<nat>. (pred`(succ(n))) =\<^sub>\<nat> n" unfolding pred_def proof show "\<And>n. n: \<nat> \<Longrightarrow> refl(n): ((\<^bold>\<lambda>n. ind\<^sub>\<nat> (\<lambda>a b. a) n n)`succ(n)) =\<^sub>\<nat> n" - proof (subst comp) + proof compute show "\<And>n. n: \<nat> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>a b. a) n n: \<nat>" by simple show "\<And>n. n: \<nat> \<Longrightarrow> refl(n): ind\<^sub>\<nat> (\<lambda>a b. a) (succ n) (succ n) =\<^sub>\<nat> n" - proof (subst comp) + proof compute show "\<nat>: U(O)" .. qed simple qed rule |