aboutsummaryrefslogtreecommitdiff
path: root/Type_Families.thy
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Type_Families.thy208
1 files changed, 0 insertions, 208 deletions
diff --git a/Type_Families.thy b/Type_Families.thy
deleted file mode 100644
index b9e1049..0000000
--- a/Type_Families.thy
+++ /dev/null
@@ -1,208 +0,0 @@
-(********
-Isabelle/HoTT: Type families as fibrations
-Feb 2019
-
-Various results viewing type families as fibrations: transport, path lifting, dependent map etc.
-
-********)
-
-theory Type_Families
-imports Eq Projections
-
-begin
-
-
-section \<open>Transport\<close>
-
-schematic_goal transport:
- assumes [intro]:
- "A: U i" "P: A \<leadsto> U j"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf: P x \<rightarrow> P y"
-proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> id P x: P x \<rightarrow> P x" by derive
-qed routine
-
-definition transport :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2transport[_, _, _, _])")
-where "transport[A, P, x, y] \<equiv> \<lambda>p: x =[A] y. indEq (\<lambda>a b. & (P a \<rightarrow> P b)) (\<lambda>x. id P x) x y p"
-
-syntax "_transport'" :: "t \<Rightarrow> t" ("transport[_]")
-
-ML \<open>val pretty_transport = Attrib.setup_config_bool @{binding "pretty_transport"} (K true)\<close>
-
-print_translation \<open>
-let fun transport_tr' ctxt [A, P, x, y] =
- if Config.get ctxt pretty_transport
- then Syntax.const @{syntax_const "_transport'"} $ P
- else @{const transport} $ A $ P $ x $ y
-in
- [(@{const_syntax transport}, transport_tr')]
-end
-\<close>
-
-corollary transport_type:
- assumes [intro]: "A: U i" "P: A \<leadsto> U j" "x: A" "y: A"
- shows "transport[A, P, x, y]: x =[A] y \<rightarrow> P x \<rightarrow> P y"
-unfolding transport_def by derive
-
-lemma transport_comp:
- assumes [intro]: "A: U i" "P: A \<leadsto> U j" "a: A"
- shows "transport[A, P, a, a]`(refl a) \<equiv> id P a"
-unfolding transport_def by derive
-
-declare
- transport_type [intro]
- transport_comp [comp]
-
-schematic_goal transport_invl:
- assumes [intro]:
- "A: U i" "P: A \<leadsto> U j"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf:
- (transport[A, P, y, x]`(inv[A, x, y]`p)) o[P x] (transport[A, P, x, y]`p) =[P x \<rightarrow> P x] id P x"
-proof (path_ind' x y p)
- fix x assume [intro]: "x: A"
- show
- "refl (id P x) :
- transport[A, P, x, x]`(inv[A, x, x]`(refl x)) o[P x] (transport[A, P, x, x]`(refl x))
- =[P x \<rightarrow> P x] id P x"
- by derive
-
- fix y p assume [intro]: "y: A" "p: x =[A] y"
- show
- "transport[A, P, y, x]`(inv[A, x, y]`p) o[P x] transport[A, P, x, y]`p
- =[P x \<rightarrow> P x] id P x : U j"
- by derive
-qed
-
-schematic_goal transport_invr:
- assumes [intro]:
- "A: U i" "P: A \<leadsto> U j"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf:
- (transport[A, P, x, y]`p) o[P y] (transport[A, P, y, x]`(inv[A, x, y]`p)) =[P y \<rightarrow> P y] id P y"
-proof (path_ind' x y p)
- fix x assume [intro]: "x: A"
- show
- "refl (id P x) :
- (transport[A, P, x, x]`(refl x)) o[P x] transport[A, P, x, x]`(inv[A, x, x]`(refl x))
- =[P x \<rightarrow> P x] id P x"
- by derive
-
- fix y p assume [intro]: "y: A" "p: x =[A] y"
- show
- "transport[A, P, x, y]`p o[P y] transport[A, P, y, x]`(inv[A, x, y]`p)
- =[P y \<rightarrow> P y] id P y : U j"
- by derive
-qed
-
-declare
- transport_invl [intro]
- transport_invr [intro]
-
-
-section \<open>Path lifting\<close>
-
-schematic_goal path_lifting:
- assumes [intro]:
- "P: A \<leadsto> U i" "A: U i"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf: \<Prod>u: P x. <x, u> =[\<Sum>x: A. P x] <y, transport[A, P, x, y]`p`u>"
-proof (path_ind' x y p, rule Prod_routine)
- fix x u assume [intro]: "x: A" "u: P x"
- have "(transport[A, P, x, x]`(refl x))`u \<equiv> u" by derive
- thus "(refl <x, u>): <x, u> =[\<Sum>(x: A). P x] <x, transport[A, P, x, x]`(refl x)`u>"
- proof simp qed routine
-qed routine
-
-definition lift :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2lift[_, _, _, _])")
-where
- "lift[A, P, x, y] \<equiv> \<lambda>u: P x. \<lambda>p: x =[A] y. (indEq
- (\<lambda>x y p. \<Prod>u: P x. <x, u> =[\<Sum>(x: A). P x] <y, transport[A, P, x, y]`p`u>)
- (\<lambda>x. \<lambda>(u: P x). refl <x, u>) x y p)`u"
-
-corollary lift_type:
- assumes [intro]:
- "P: A \<leadsto> U i" "A: U i"
- "x: A" "y: A"
- shows
- "lift[A, P, x, y]:
- \<Prod>u: P x. \<Prod>p: x =[A] y. <x, u> =[\<Sum>x: A. P x] <y, transport[A, P, x, y]`p`u>"
-unfolding lift_def by (derive lems: path_lifting)
-
-corollary lift_comp:
- assumes [intro]:
- "P: A \<leadsto> U i" "A: U i"
- "x: A" "u: P x"
- shows "lift[A, P, x, x]`u`(refl x) \<equiv> refl <x, u>"
-unfolding lift_def apply compute prefer 3 apply compute by derive
-
-declare
- lift_type [intro]
- lift_comp [comp]
-
-text \<open>
-Proof of the computation property of @{const lift}, stating that the first projection of the lift of @{term p} is equal to @{term p}:
-\<close>
-
-schematic_goal lift_fst_comp:
- assumes [intro]:
- "P: A \<leadsto> U i" "A: U i"
- "x: A" "y: A" "p: x =[A] y"
- defines
- "Fst \<equiv> \<lambda>x y p u. ap[fst[A, P], \<Sum>x: A. P x, A, <x, u>, <y, transport[A, P, x, y]`p`u>]"
- shows
- "?prf: \<Prod>u: P x. (Fst x y p u)`(lift[A, P, x, y]`u`p) =[x =[A] y] p"
-proof
- (path_ind' x y p, quantify_all)
- fix x assume [intro]: "x: A"
- show "\<And>u. u: P x \<Longrightarrow>
- refl(refl x): (Fst x x (refl x) u)`(lift[A, P, x, x]`u`(refl x)) =[x =[A] x] refl x"
- unfolding Fst_def by derive
-
- fix y p assume [intro]: "y: A" "p: x =[A] y"
- show "\<Prod>u: P x. (Fst x y p u)`(lift[A, \<lambda>a. P a, x, y]`u`p) =[x =[A] y] p: U i"
- proof derive
- fix u assume [intro]: "u: P x"
- have
- "fst[A, P]`<x, u> \<equiv> x" "fst[A, P]`<y, transport[A, P, x, y]`p`u> \<equiv> y" by derive
- moreover have
- "Fst x y p u:
- <x, u> =[\<Sum>(x: A). P x] <y, transport[A, P, x, y]`p`u> \<rightarrow>
- fst[A, P]`<x, u> =[A] fst[A, P]`<y, transport[A, P, x, y]`p`u>"
- unfolding Fst_def by derive
- ultimately show
- "Fst x y p u: <x, u> =[\<Sum>(x: A). P x] <y, transport[A, P, x, y]`p`u> \<rightarrow> x =[A] y"
- by simp
- qed routine
-qed fact
-
-
-section \<open>Dependent map\<close>
-
-schematic_goal dependent_map:
- assumes [intro]:
- "A: U i" "B: A \<leadsto> U i"
- "f: \<Prod>x: A. B x"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf: transport[A, B, x, y]`p`(f`x) =[B y] f`y"
-proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> refl (f`x): transport[A, B, x, x]`(refl x)`(f`x) =[B x] f`x" by derive
-qed derive
-
-definition apd :: "[t, t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(apd[_, _, _, _, _])") where
-"apd[f, A, B, x, y] \<equiv>
- \<lambda>p: x =[A] y. indEq (\<lambda>x y p. transport[A, B, x, y]`p`(f`x) =[B y] f`y) (\<lambda>x. refl (f`x)) x y p"
-
-corollary apd_type:
- assumes [intro]:
- "A: U i" "B: A \<leadsto> U i"
- "f: \<Prod>x: A. B x"
- "x: A" "y: A"
- shows "apd[f, A, B, x, y]: \<Prod>p: x =[A] y. transport[A, B, x, y]`p`(f`x) =[B y] f`y"
-unfolding apd_def by derive
-
-declare apd_type [intro]
-
-
-end