aboutsummaryrefslogtreecommitdiff
path: root/Projections.thy
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Projections.thy43
1 files changed, 0 insertions, 43 deletions
diff --git a/Projections.thy b/Projections.thy
deleted file mode 100644
index c89b569..0000000
--- a/Projections.thy
+++ /dev/null
@@ -1,43 +0,0 @@
-(********
-Isabelle/HoTT: Projections
-Feb 2019
-
-Projection functions for the dependent sum type.
-
-********)
-
-theory Projections
-imports Prod Sum
-
-begin
-
-definition fst ("(2fst[_,/ _])")
-where "fst[A, B] \<equiv> \<lambda>(p: \<Sum>x: A. B x). indSum (\<lambda>_. A) (\<lambda>x y. x) p"
-
-definition snd ("(2snd[_,/ _])")
-where "snd[A, B] \<equiv> \<lambda>(p: \<Sum>x: A. B x). indSum (\<lambda>p. B (fst[A, B]`p)) (\<lambda>x y. y) p"
-
-lemma fst_type:
- assumes [intro]: "A: U i" "B: A \<leadsto> U i"
- shows "fst[A, B]: (\<Sum>x: A. B x) \<rightarrow> A"
-unfolding fst_def by derive
-
-lemma fst_cmp:
- assumes [intro]: "A: U i" "B: A \<leadsto> U i" "a: A" "b: B a"
- shows "fst[A, B]`<a, b> \<equiv> a"
-unfolding fst_def by derive
-
-lemma snd_type:
- assumes [intro]: "A: U i" "B: A \<leadsto> U i"
- shows "snd[A, B]: \<Prod>(p: \<Sum>x: A. B x). B (fst[A,B]`p)"
-unfolding snd_def by (derive lems: fst_type comp: fst_cmp)
-
-lemma snd_cmp:
- assumes [intro]: "A: U i" "B: A \<leadsto> U i" "a: A" "b: B a"
- shows "snd[A, B]`<a, b> \<equiv> b"
-unfolding snd_def proof derive qed (derive lems: assms fst_type comp: fst_cmp)
-
-lemmas proj_type [intro] = fst_type snd_type
-lemmas proj_comp [comp] = fst_cmp snd_cmp
-
-end