aboutsummaryrefslogtreecommitdiff
path: root/Proj.thy
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Proj.thy12
1 files changed, 6 insertions, 6 deletions
diff --git a/Proj.thy b/Proj.thy
index 5c05eb2..d5ae6fa 100644
--- a/Proj.thy
+++ b/Proj.thy
@@ -20,7 +20,7 @@ text "Typing judgments and computation rules for the dependent and non-dependent
lemma fst_type:
assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "fst(p): A"
-unfolding fst_def by (derive lem: assms)
+unfolding fst_def by (derive lems: assms)
lemma fst_comp:
assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "fst(<a,b>) \<equiv> a"
@@ -33,14 +33,14 @@ lemma snd_type:
assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "snd(p): B(fst p)"
unfolding snd_def
proof
- show "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> B(fst p): U(i)" by (derive lem: assms fst_type)
+ show "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> B(fst p): U(i)" by (derive lems: assms fst_type)
fix x y
assume asm: "x: A" "y: B(x)"
show "y: B(fst <x,y>)"
proof (subst fst_comp)
- show "A: U(i)" by (wellformed lem: assms(1))
- show "\<And>x. x: A \<Longrightarrow> B(x): U(i)" by (wellformed lem: assms(1))
+ show "A: U(i)" by (wellformed lems: assms(1))
+ show "\<And>x. x: A \<Longrightarrow> B(x): U(i)" by (wellformed lems: assms(1))
qed fact+
qed fact
@@ -51,13 +51,13 @@ proof
show "\<And>x y. y: B(x) \<Longrightarrow> y: B(x)" .
show "a: A" by fact
show "b: B(a)" by fact
-qed (simple lem: assms)
+qed (simple lems: assms)
text "Rule declarations:"
lemmas Proj_types [intro] = fst_type snd_type
-lemmas Proj_comps [intro] = fst_comp snd_comp
+lemmas Proj_comps [comp] = fst_comp snd_comp
end \ No newline at end of file