aboutsummaryrefslogtreecommitdiff
path: root/ProdProps.thy
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--ProdProps.thy29
1 files changed, 5 insertions, 24 deletions
diff --git a/ProdProps.thy b/ProdProps.thy
index 2145bf9..7071b39 100644
--- a/ProdProps.thy
+++ b/ProdProps.thy
@@ -39,35 +39,16 @@ proof (subst (0 1 2 3) compose_def)
qed
-lemma compose_comp':
+lemma compose_comp:
assumes "A: U(i)" and "\<And>x. x: A \<Longrightarrow> b(x): B" and "\<And>x. x: B \<Longrightarrow> c(x): C(x)"
shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))"
proof (subst compose_def, subst Prod_eq)
- show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`x) \<equiv> \<^bold>\<lambda>x. c (b x)"
+ show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a"
proof compute
-
-
-
-text "However we can derive a variant with more explicit premises:"
-
-lemma compose_comp:
- assumes
- "A: U(i)" "B: U(i)" "C: B \<longrightarrow> U(i)" and
- "\<And>x. x: A \<Longrightarrow> b(x): B" and
- "\<And>x. x: B \<Longrightarrow> c(x): C(x)"
- shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))"
-proof (subst compose_def)
- show "\<^bold>\<lambda>x. (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`x) \<equiv> \<^bold>\<lambda>x. c(b(x))"
- proof
- show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`a) \<equiv> c(b(a))"
- proof compute
- show "\<And>a. a: A \<Longrightarrow> c((\<^bold>\<lambda>x. b(x))`a) \<equiv> c(b(a))" by compute (simple lems: assms)
- qed (simple lems: assms)
- qed fact
+ show "\<And>a. a: A \<Longrightarrow> c((\<^bold>\<lambda>x. b(x))`a) \<equiv> (\<^bold>\<lambda>x. c(b(x)))`a"
+ by compute (simple lems: assms, compute?)+
+ qed (simple lems: assms)
qed (simple lems: assms)
-lemmas compose_comps [comp] = compose_def compose_comp
-
-
end