diff options
Diffstat (limited to 'HoTT_Theorems.thy')
-rw-r--r-- | HoTT_Theorems.thy | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy index 52e1b32..5578bf8 100644 --- a/HoTT_Theorems.thy +++ b/HoTT_Theorems.thy @@ -57,11 +57,11 @@ proposition wellformed_currying: "B: A \<rightarrow> U" and "\<And>x::Term. C(x): B(x) \<rightarrow> U" shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U" -proof (rule Prod_formation) +proof fix x::Term assume *: "x : A" show "\<Prod>y:B(x). C x y : U" - proof (rule Prod_formation) + proof show "B(x) : U" using * by (rule assms) qed (rule assms) qed (rule assms) @@ -78,15 +78,15 @@ proposition triply_curried: "\<And>x y::Term. y : B(x) \<Longrightarrow> C(x)(y) : U" and "\<And>x y z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U" -proof (rule Prod_formation) +proof fix x::Term assume 1: "x : A" show "\<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U" - proof (rule Prod_formation) + proof show "B(x) : U" using 1 by (rule assms) fix y::Term assume 2: "y : B(x)" show "\<Prod>z:C(x)(y). D(x)(y)(z) : U" - proof (rule Prod_formation) + proof show "C x y : U" using 2 by (rule assms) show "\<And>z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" by (rule assms) qed |