diff options
Diffstat (limited to 'HoTT_Test.thy')
-rw-r--r-- | HoTT_Test.thy | 217 |
1 files changed, 217 insertions, 0 deletions
diff --git a/HoTT_Test.thy b/HoTT_Test.thy new file mode 100644 index 0000000..4c87e78 --- /dev/null +++ b/HoTT_Test.thy @@ -0,0 +1,217 @@ +(* Title: HoTT/HoTT_Test.thy + Author: Josh Chen + Date: Aug 2018 + +This is an old "test suite" from early implementations of the theory, updated for the most recent version. +It is not always guaranteed to be up to date. +*) + +theory HoTT_Test + imports HoTT +begin + + +text " + A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified. + + Things that *should* be automated: + - Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>. + - Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair? +" + +declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=5]] + \<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close> + + +section \<open>\<Pi>-type\<close> + +subsection \<open>Typing functions\<close> + +text " + Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following. +" + +proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" using assms .. + +proposition + assumes "A : U(i)" and "A \<equiv> B" + shows "\<^bold>\<lambda>x. x : B \<rightarrow> A" +proof - + have "A\<rightarrow>A \<equiv> B\<rightarrow>A" using assms by simp + moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" using assms(1) .. + ultimately show "\<^bold>\<lambda>x. x : B \<rightarrow> A" by simp +qed + +proposition + assumes "A : U(i)" and "B : U(i)" + shows "\<^bold>\<lambda>x y. x : A \<rightarrow> B \<rightarrow> A" +by (simple lems: assms) + + +subsection \<open>Function application\<close> + +proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a" by (simple lems: assms) + +text "Currying:" + +lemma + assumes "a : A" and "\<And>x. x: A \<Longrightarrow> B(x): U(i)" + shows "(\<^bold>\<lambda>x y. y)`a \<equiv> \<^bold>\<lambda>y. y" +proof + show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. y : B(x) \<rightarrow> B(x)" by (simple lems: assms) +qed fact + +lemma "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)`a`b \<equiv> b" by simp + +lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y)`a \<equiv> \<^bold>\<lambda>y:B(a). f a y" by simp + +lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp + + +subsection \<open>Currying functions\<close> + +proposition curried_function_formation: + fixes + A::Term and + B::"Term \<Rightarrow> Term" and + C::"Term \<Rightarrow> Term \<Rightarrow> Term" + assumes + "A : U" and + "B: A \<rightarrow> U" and + "\<And>x::Term. C(x): B(x) \<rightarrow> U" + shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U" +proof + fix x::Term + assume *: "x : A" + show "\<Prod>y:B(x). C x y : U" + proof + show "B(x) : U" using * by (rule assms) + qed (rule assms) +qed (rule assms) + +(**** GOOD CANDIDATE FOR AUTOMATION - EISBACH! ****) +proposition higher_order_currying_formation: + fixes + A::Term and + B::"Term \<Rightarrow> Term" and + C::"[Term, Term] \<Rightarrow> Term" and + D::"[Term, Term, Term] \<Rightarrow> Term" + assumes + "A : U" and + "B: A \<rightarrow> U" and + "\<And>x y::Term. y : B(x) \<Longrightarrow> C(x)(y) : U" and + "\<And>x y z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" + shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U" +proof + fix x::Term assume 1: "x : A" + show "\<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U" + proof + show "B(x) : U" using 1 by (rule assms) + + fix y::Term assume 2: "y : B(x)" + show "\<Prod>z:C(x)(y). D(x)(y)(z) : U" + proof + show "C x y : U" using 2 by (rule assms) + show "\<And>z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" by (rule assms) + qed + qed +qed (rule assms) + +(**** AND PROBABLY THIS TOO? ****) +lemma curried_type_judgment: + fixes + a b A::Term and + B::"Term \<Rightarrow> Term" and + f C::"[Term, Term] \<Rightarrow> Term" + assumes "\<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y" + shows "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y : \<Prod>x:A. \<Prod>y:B(x). C x y" +proof + fix x::Term + assume *: "x : A" + show "\<^bold>\<lambda>y:B(x). f x y : \<Prod>y:B(x). C x y" + proof + fix y::Term + assume **: "y : B(x)" + show "f x y : C x y" using * ** by (rule assms) + qed +qed + +text "Note that the propositions and proofs above often say nothing about the well-formedness of the types, or the well-typedness of the lambdas involved; one has to be very explicit and prove such things separately! +This is the result of the choices made regarding the premises of the type rules." + + +section \<open>\<Sum> type\<close> + +text "The following shows that the dependent sum inductor has the type we expect it to have:" + +lemma + assumes "C: \<Sum>x:A. B(x) \<rightarrow> U" + shows "indSum(C) : \<Prod>f:(\<Prod>x:A. \<Prod>y:B(x). C((x,y))). \<Prod>p:(\<Sum>x:A. B(x)). C(p)" +proof - + define F and P where + "F \<equiv> \<Prod>x:A. \<Prod>y:B(x). C((x,y))" and + "P \<equiv> \<Sum>x:A. B(x)" + + have "\<^bold>\<lambda>f:F. \<^bold>\<lambda>p:P. indSum(C)`f`p : \<Prod>f:F. \<Prod>p:P. C(p)" + proof (rule curried_type_judgment) + fix f p::Term + assume "f : F" and "p : P" + with assms show "indSum(C)`f`p : C(p)" unfolding F_def P_def .. + qed + + then show "indSum(C) : \<Prod>f:F. \<Prod>p:P. C(p)" by simp +qed + +(**** AUTOMATION CANDIDATE ****) +text "Propositional uniqueness principle for dependent sums:" + +text "We would like to eventually automate proving that 'a given type \<open>A\<close> is inhabited', i.e. search for an element \<open>a:A\<close>. + +A good starting point would be to automate the application of elimination rules." + +notepad begin + +fix A B assume "A : U" and "B: A \<rightarrow> U" + +define C where "C \<equiv> \<lambda>p. p =[\<Sum>x:A. B(x)] (fst[A,B]`p, snd[A,B]`p)" +have *: "C: \<Sum>x:A. B(x) \<rightarrow> U" +proof - + fix p assume "p : \<Sum>x:A. B(x)" + have "(fst[A,B]`p, snd[A,B]`p) : \<Sum>x:A. B(x)" + +define f where "f \<equiv> \<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). refl((x,y))" +have "f`x`y : C((x,y))" +sorry + +have "p : \<Sum>x:A. B(x) \<Longrightarrow> indSum(C)`f`p : C(p)" using * ** by (rule Sum_elim) + +end + +section \<open>Universes and polymorphism\<close> + +text "Polymorphic identity function." + +consts Ui::Term + +definition Id where "Id \<equiv> \<^bold>\<lambda>A:Ui. \<^bold>\<lambda>x:A. x" + + +(* +section \<open>Natural numbers\<close> + +text "Here's a dumb proof that 2 is a natural number." + +proposition "succ(succ 0) : Nat" + proof - + have "0 : Nat" by (rule Nat_intro1) + from this have "(succ 0) : Nat" by (rule Nat_intro2) + thus "succ(succ 0) : Nat" by (rule Nat_intro2) + qed + +text "We can of course iterate the above for as many applications of \<open>succ\<close> as we like. +The next thing to do is to implement induction to automate such proofs. + +When we get more stuff working, I'd like to aim for formalizing the encode-decode method to be able to prove the only naturals are 0 and those obtained from it by \<open>succ\<close>." +*) + +end |