aboutsummaryrefslogtreecommitdiff
path: root/Equivalence.thy
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Equivalence.thy228
1 files changed, 0 insertions, 228 deletions
diff --git a/Equivalence.thy b/Equivalence.thy
deleted file mode 100644
index 07ef0df..0000000
--- a/Equivalence.thy
+++ /dev/null
@@ -1,228 +0,0 @@
-(********
-Isabelle/HoTT: Quasi-inverse and equivalence
-Mar 2019
-
-********)
-
-theory Equivalence
-imports Type_Families
-
-begin
-
-section \<open>Homotopy\<close>
-
-definition homotopy :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2homotopy[_, _] _ _)" [0, 0, 1000, 1000])
-where "homotopy[A, B] f g \<equiv> \<Prod>x: A. f`x =[B x] g`x"
-
-declare homotopy_def [comp]
-
-syntax "_homotopy" :: "[t, idt, t, t, t] \<Rightarrow> t" ("(1_ ~[_: _. _]/ _)" [101, 0, 0, 0, 101] 100)
-translations "f ~[x: A. B] g" \<rightleftharpoons> "(CONST homotopy) A (\<lambda>x. B) f g"
-
-lemma homotopy_type:
- assumes [intro]: "A: U i" "B: A \<leadsto> U i" "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
- shows "f ~[x: A. B x] g: U i"
-by derive
-
-declare homotopy_type [intro]
-
-text \<open>Homotopy inverse and composition (symmetry and transitivity):\<close>
-
-definition hominv :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2hominv[_, _, _, _])")
-where "hominv[A, B, f, g] \<equiv> \<lambda>H: f ~[x: A. B x] g. \<lambda>x: A. inv[B x, f`x, g`x]`(H`x)"
-
-lemma hominv_type:
- assumes [intro]: "A: U i" "B: A \<leadsto> U i" "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
- shows "hominv[A, B, f, g]: f ~[x: A. B x] g \<rightarrow> g ~[x: A. B x] f"
-unfolding hominv_def by (derive, fold homotopy_def)+ derive
-
-definition homcomp :: "[t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t" ("(2homcomp[_, _, _, _, _])") where
- "homcomp[A, B, f, g, h] \<equiv> \<lambda>H: f ~[x: A. B x] g. \<lambda>H': g ~[x: A. B x] h.
- \<lambda>x: A. pathcomp[B x, f`x, g`x, h`x]`(H`x)`(H'`x)"
-
-lemma homcomp_type:
- assumes [intro]:
- "A: U i" "B: A \<leadsto> U i"
- "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x" "h: \<Prod>x: A. B x"
- shows "homcomp[A, B, f, g, h]: f ~[x: A. B x] g \<rightarrow> g ~[x: A. B x] h \<rightarrow> f ~[x: A. B x] h"
-unfolding homcomp_def by (derive, fold homotopy_def)+ derive
-
-schematic_goal fun_eq_imp_homotopy:
- assumes [intro]:
- "p: f =[\<Prod>x: A. B x] g"
- "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
- "A: U i" "B: A \<leadsto> U i"
- shows "?prf: f ~[x: A. B x] g"
-proof (path_ind' f g p)
- show "\<And>f. f : \<Prod>(x: A). B x \<Longrightarrow> \<lambda>x: A. refl(f`x): f ~[x: A. B x] f" by derive
-qed routine
-
-definition happly :: "[t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"
-where "happly A B f g p \<equiv> indEq (\<lambda>f g. & f ~[x: A. B x] g) (\<lambda>f. \<lambda>(x: A). refl(f`x)) f g p"
-
-syntax "_happly" :: "[idt, t, t, t, t, t] \<Rightarrow> t"
- ("(2happly[_: _. _] _ _ _)" [0, 0, 0, 1000, 1000, 1000])
-translations "happly[x: A. B] f g p" \<rightleftharpoons> "(CONST happly) A (\<lambda>x. B) f g p"
-
-corollary happly_type:
- assumes [intro]:
- "p: f =[\<Prod>x: A. B x] g"
- "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
- "A: U i" "B: A \<leadsto> U i"
- shows "happly[x: A. B x] f g p: f ~[x: A. B x] g"
-unfolding happly_def by (derive lems: fun_eq_imp_homotopy)
-
-text \<open>Homotopy and function composition:\<close>
-
-schematic_goal composition_homl:
- assumes [intro]:
- "H: f ~[x: A. B] g"
- "f: A \<rightarrow> B" "g: A \<rightarrow> B" "h: B \<rightarrow> C"
- "A: U i" "B: U i" "C: U i"
- shows "?prf: h o[A] f ~[x: A. C] h o[A] g"
-unfolding homotopy_def compose_def proof (rule Prod_routine, subst (0 1) comp)
- fix x assume [intro]: "x: A"
- show "ap[h, B, C, f`x, g`x]`(H`x): h`(f`x) =[C] h`(g`x)" by (routine, fold homotopy_def, fact+)
-qed routine
-
-schematic_goal composition_homr:
- assumes [intro]:
- "H: f ~[x: B. C] g"
- "h: A \<rightarrow> B" "f: B \<rightarrow> C" "g: B \<rightarrow> C"
- "A: U i" "B: U i" "C: U i"
- shows "?prf: f o[A] h ~[x: A. C] g o[A] h"
-unfolding homotopy_def compose_def proof (rule Prod_routine, subst (0 1) comp)
- fix x assume [intro]: "x: A"
- show "H`(h`x): f`(h`x) =[C] g`(h`x)" by (routine, fold homotopy_def, routine)
-qed routine
-
-
-section \<open>Bi-invertibility\<close>
-
-definition biinv :: "[t, t, t] \<Rightarrow> t" ("(2biinv[_, _]/ _)")
-where "biinv[A, B] f \<equiv>
- (\<Sum>g: B \<rightarrow> A. g o[A] f ~[x:A. A] id A) \<times> (\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B)"
-
-text \<open>
-The meanings of the syntax defined above are:
-\<^item> @{term "f ~[x: A. B x] g"} expresses that @{term f} and @{term g} are homotopy functions of type @{term "\<Prod>x:A. B x"}.
-\<^item> @{term "biinv[A, B] f"} expresses that the function @{term f} of type @{term "A \<rightarrow> B"} is bi-invertible.
-\<close>
-
-lemma biinv_type:
- assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
- shows "biinv[A, B] f: U i"
-unfolding biinv_def by derive
-
-declare biinv_type [intro]
-
-schematic_goal id_is_biinv:
- assumes [intro]: "A: U i"
- shows "?prf: biinv[A, A] (id A)"
-unfolding biinv_def proof (rule Sum_routine)
- show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (g o[A] id A) ~[x: A. A] (id A)" by derive
- show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (id A o[A] g) ~[x: A. A] (id A)" by derive
-qed derive
-
-definition equivalence :: "[t, t] \<Rightarrow> t" (infix "\<cong>" 100)
-where "A \<cong> B \<equiv> \<Sum>f: A \<rightarrow> B. biinv[A, B] f"
-
-schematic_goal equivalence_symmetric:
- assumes [intro]: "A: U i"
- shows "?prf: A \<cong> A"
-unfolding equivalence_def proof (rule Sum_routine)
- show "\<And>f. f : A \<rightarrow> A \<Longrightarrow> biinv[A, A] f : U i" unfolding biinv_def by derive
- show "id A: A \<rightarrow> A" by routine
-qed (routine add: id_is_biinv)
-
-
-section \<open>Quasi-inverse\<close>
-
-definition qinv :: "[t, t, t] \<Rightarrow> t" ("(2qinv[_, _]/ _)")
-where "qinv[A, B] f \<equiv> \<Sum>g: B \<rightarrow> A. (g o[A] f ~[x: A. A] id A) \<times> (f o[B] g ~[x: B. B] id B)"
-
-schematic_goal biinv_imp_qinv:
- assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
- shows "?prf: (biinv[A, B] f) \<rightarrow> (qinv[A,B] f)"
-proof (rule Prod_routine)
-
-assume [intro]: "b: biinv[A, B] f"
-
-text \<open>Components of the witness of biinvertibility of @{term f}:\<close>
-
-let ?fst_of_b =
- "fst[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B]"
-and ?snd_of_b =
- "snd[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B]"
-
-define g H g' H' where
- "g \<equiv> fst[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] ` (?fst_of_b ` b)" and
- "H \<equiv> snd[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] ` (?fst_of_b ` b)" and
- "g' \<equiv> fst[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] ` (?snd_of_b ` b)" and
- "H' \<equiv> snd[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] ` (?snd_of_b ` b)"
-
-have "H: g o[A] f ~[x: A. A] id A"
-unfolding H_def g_def proof standard+
- have
- "fst[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B] :
- (biinv[A, B] f) \<rightarrow> (\<Sum>(g: B \<rightarrow> A). g o[A] f ~[g: A. A] id A)" unfolding biinv_def by derive
- thus
- "fst[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B]`b :
- \<Sum>(g: B \<rightarrow> A). g o[A] f ~[g: A. A] id A" by derive rule
-qed derive
-
-moreover have "(id A) o[B] g' \<equiv> g'" proof derive
- show "g': B \<rightarrow> A" unfolding g'_def proof
- have
- "snd[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B] :
- (biinv[A, B] f) \<rightarrow> (\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B)" unfolding biinv_def by derive
- thus
- "snd[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B]`b :
- \<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B" by derive rule
- qed derive
-qed
-
-
-
-section \<open>Transport, homotopy, and bi-invertibility\<close>
-
-schematic_goal transport_invl_hom:
- assumes [intro]:
- "P: A \<leadsto> U j" "A: U i"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf:
- (transport[A, P, y, x]`(inv[A, x, y]`p)) o[P x] (transport[A, P, x, y]`p) ~[w: P x. P x] id P x"
-by (rule happly_type[OF transport_invl], derive)
-
-schematic_goal transport_invr_hom:
- assumes [intro]:
- "A: U i" "P: A \<leadsto> U j"
- "y: A" "x: A" "p: x =[A] y"
- shows "?prf:
- (transport[A, P, x, y]`p) o[P y] (transport[A, P, y, x]`(inv[A, x, y]`p)) ~[w: P y. P y] id P y"
-by (rule happly_type[OF transport_invr], derive)
-
-declare
- transport_invl_hom [intro]
- transport_invr_hom [intro]
-
-text \<open>
-The following result states that the transport of an equality @{term p} is bi-invertible, with inverse given by the transport of the inverse @{text "~p"}.
-\<close>
-
-schematic_goal transport_biinv:
- assumes [intro]: "p: A =[U i] B" "A: U i" "B: U i"
- shows "?prf: biinv[A, B] (transport[U i, Id, A, B]`p)"
-unfolding biinv_def
-apply (rule Sum_routine)
-prefer 2
- apply (rule Sum_routine)
- prefer 3 apply (rule transport_invl_hom)
-prefer 9
- apply (rule Sum_routine)
- prefer 3 apply (rule transport_invr_hom)
-\<comment> \<open>The remaining subgoals are now handled easily\<close>
-by derive
-
-
-end