aboutsummaryrefslogtreecommitdiff
path: root/Equality.thy
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Equality.thy201
1 files changed, 0 insertions, 201 deletions
diff --git a/Equality.thy b/Equality.thy
deleted file mode 100644
index 851c569..0000000
--- a/Equality.thy
+++ /dev/null
@@ -1,201 +0,0 @@
-(*
-Title: Equality.thy
-Author: Joshua Chen
-Date: 2018
-
-Properties of equality
-*)
-
-theory Equality
-imports HoTT_Methods Equal Prod
-
-begin
-
-
-section \<open>Symmetry of equality/Path inverse\<close>
-
-definition inv :: "t \<Rightarrow> t" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. refl x) p"
-
-lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =\<^sub>A y\<rbrakk> \<Longrightarrow> p\<inverse>: y =\<^sub>A x"
-unfolding inv_def by (elim Equal_elim) routine
-
-lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (refl a)\<inverse> \<equiv> refl a"
-unfolding inv_def by compute routine
-
-declare
- inv_type [intro]
- inv_comp [comp]
-
-
-section \<open>Transitivity of equality/Path composition\<close>
-
-text \<open>
-Composition function, of type @{term "x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"} polymorphic over @{term A}, @{term x}, @{term y}, and @{term z}.
-\<close>
-
-definition pathcomp :: t where "pathcomp \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. (refl x)) q) p"
-
-syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "\<bullet>" 110)
-translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q"
-
-lemma pathcomp_type:
- assumes "A: U i" "x: A" "y: A" "z: A"
- shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"
-unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms)
-
-corollary pathcomp_trans:
- assumes "A: U i" and "x: A" "y: A" "z: A" and "p: x =\<^sub>A y" "q: y =\<^sub>A z"
- shows "p \<bullet> q: x =\<^sub>A z"
-by (routine add: assms pathcomp_type)
-
-lemma pathcomp_comp:
- assumes "A: U i" and "a: A"
- shows "(refl a) \<bullet> (refl a) \<equiv> refl a"
-unfolding pathcomp_def by (derive lems: assms)
-
-declare
- pathcomp_type [intro]
- pathcomp_trans [intro]
- pathcomp_comp [comp]
-
-
-section \<open>Higher groupoid structure of types\<close>
-
-schematic_goal pathcomp_right_id:
- assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
- shows "?a: p \<bullet> (refl y) =[x =\<^sub>A y] p"
-proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) \<comment> \<open>@{method elim} does not seem to work with schematic goals.\<close>
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
- by (derive lems: assms)
-qed (routine add: assms)
-
-schematic_goal pathcomp_left_id:
- assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
- shows "?a: (refl x) \<bullet> p =[x =\<^sub>A y] p"
-proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
- by (derive lems: assms)
-qed (routine add: assms)
-
-schematic_goal pathcomp_left_inv:
- assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
- shows "?a: (p\<inverse> \<bullet> p) =[y =\<^sub>A y] refl(y)"
-proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse> \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
- by (derive lems: assms)
-qed (routine add: assms)
-
-schematic_goal pathcomp_right_inv:
- assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
- shows "?a: (p \<bullet> p\<inverse>) =[x =\<^sub>A x] refl(x)"
-proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x)\<inverse> =[x =\<^sub>A x] (refl x)"
- by (derive lems: assms)
-qed (routine add: assms)
-
-schematic_goal inv_involutive:
- assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
- shows "?a: p\<inverse>\<inverse> =[x =\<^sub>A y] p"
-proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse>\<inverse> =[x =\<^sub>A x] (refl x)"
- by (derive lems: assms)
-qed (routine add: assms)
-
-text \<open>All of the propositions above have the same proof term, which we abbreviate here.\<close>
-abbreviation \<iota> :: "t \<Rightarrow> t" where "\<iota> p \<equiv> ind\<^sub>= (\<lambda>x. refl (refl x)) p"
-
-text \<open>The next proof has a triply-nested path induction.\<close>
-
-lemma pathcomp_assoc:
- assumes "A: U i" "x: A" "y: A" "z: A" "w: A"
- shows "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p:
- \<Prod>p: x =\<^sub>A y. \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r"
-proof
- show "\<And>p. p: x =\<^sub>A y \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p:
- \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r"
- proof (elim Equal_elim)
- fix x assume 1: "x: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q:
- \<Prod>q: x =\<^sub>A z. \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r"
- proof
- show "\<And>q. q: x =\<^sub>A z \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q:
- \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r"
- proof (elim Equal_elim)
- fix x assume *: "x: A"
- show "\<^bold>\<lambda>r. \<iota> r: \<Prod>r: x =\<^sub>A w. refl x \<bullet> (refl x \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> refl x \<bullet> r"
- proof
- show "\<And>r. r: x =[A] w \<Longrightarrow> \<iota> r: refl x \<bullet> (refl x \<bullet> r) =[x =[A] w] refl x \<bullet> refl x \<bullet> r"
- by (elim Equal_elim, derive lems: * assms)
- qed (routine add: * assms)
- qed (routine add: 1 assms)
- qed (routine add: 1 assms)
-
- text \<open>
- In the following part @{method derive} fails to obtain the correct subgoals, so we have to prove the statement manually.
- \<close>
- fix y p assume 2: "y: A" "p: x =\<^sub>A y"
- show "\<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i"
- proof (routine add: assms)
- fix q assume 3: "q: y =\<^sub>A z"
- show "\<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i"
- proof (routine add: assms)
- show "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> (q \<bullet> r): x =[A] w" and "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> q \<bullet> r: x =[A] w"
- by (routine add: 1 2 3 assms)
- qed (routine add: 1 assms)
- qed fact+
- qed fact+
-qed (routine add: assms)
-
-
-section \<open>Functoriality of functions on types\<close>
-
-schematic_goal transfer_lemma:
- assumes
- "f: A \<rightarrow> B" "A: U i" "B: U i"
- "p: x =\<^sub>A y" "x: A" "y: A"
- shows "?a: (f`x =\<^sub>B f`y)"
-proof (rule Equal_elim[where ?C="\<lambda>x y _. f`x =\<^sub>B f`y"])
- show "\<And>x. x: A \<Longrightarrow> refl (f`x): f`x =\<^sub>B f`x" by (routine add: assms)
-qed (routine add: assms)
-
-definition ap :: "t \<Rightarrow> t" ("(ap\<^sub>_)") where "ap f \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>x. refl (f`x)) p"
-
-syntax "_ap_ascii" :: "t \<Rightarrow> t" ("(ap[_])")
-translations "ap[f]" \<rightleftharpoons> "CONST ap f"
-
-corollary ap_type:
- assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
- shows "\<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> ap f: x =\<^sub>A y \<rightarrow> f`x =\<^sub>B f`y"
-unfolding ap_def by (derive lems: assms transfer_lemma)
-
-schematic_goal functions_are_functorial:
- assumes
- "f: A \<rightarrow> B" "g: B \<rightarrow> C"
- "A: U i" "B: U i" "C: U i"
- "x: A" "y: A" "z: A"
- "p: x =\<^sub>A y" "q: y =\<^sub>A z"
- shows
- 1: "?a: ap\<^sub>f`(p \<bullet> q) =[?A] ap\<^sub>f`p \<bullet> ap\<^sub>f`q" and
- 2: "?b: ap\<^sub>f`(p\<inverse>) =[?B] (ap\<^sub>f`p)\<inverse>" and
- 3: "?c: ap\<^sub>g`(ap\<^sub>f`p) =[?C] ap[g \<circ> f]`p" and
- 4: "?d: ap[id]`p =[?D] p"
-oops
-
-
-section \<open>Transport\<close>
-
-definition transport :: "t \<Rightarrow> t" where "transport p \<equiv> ind\<^sub>= (\<lambda>_. (\<^bold>\<lambda>x. x)) p"
-
-text \<open>Note that @{term transport} is a polymorphic function in our formulation.\<close>
-
-lemma transport_type: "\<lbrakk>p: x =\<^sub>A y; x: A; y: A; A: U i; P: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> transport p: P x \<rightarrow> P y"
-unfolding transport_def by (elim Equal_elim) routine
-
-corollary transport_elim: "\<lbrakk>x: P a; P: A \<longrightarrow> U i; p: a =\<^sub>A b; a: A; b: A; A: U i\<rbrakk> \<Longrightarrow> (transport p)`x: P b"
-by (routine add: transport_type)
-
-lemma transport_comp: "\<lbrakk>A: U i; x: A\<rbrakk> \<Longrightarrow> transport (refl x) \<equiv> id"
-unfolding transport_def by derive
-
-
-end