aboutsummaryrefslogtreecommitdiff
path: root/Coprod.thy
diff options
context:
space:
mode:
Diffstat (limited to 'Coprod.thy')
-rw-r--r--Coprod.thy64
1 files changed, 24 insertions, 40 deletions
diff --git a/Coprod.thy b/Coprod.thy
index 97e0566..d97228e 100644
--- a/Coprod.thy
+++ b/Coprod.thy
@@ -1,65 +1,49 @@
-(* Title: HoTT/Coprod.thy
- Author: Josh Chen
+(*
+Title: Coprod.thy
+Author: Joshua Chen
+Date: 2018
Coproduct type
*)
theory Coprod
- imports HoTT_Base
-begin
+imports HoTT_Base
+begin
-section \<open>Constants and type rules\<close>
axiomatization
- Coprod :: "[t, t] \<Rightarrow> t" (infixr "+" 50) and
- inl :: "t \<Rightarrow> t" and
- inr :: "t \<Rightarrow> t" and
+ Coprod :: "[t, t] \<Rightarrow> t" (infixr "+" 50) and
+ inl :: "t \<Rightarrow> t" and
+ inr :: "t \<Rightarrow> t" and
indCoprod :: "[t \<Rightarrow> t, t \<Rightarrow> t, t] \<Rightarrow> t" ("(1ind\<^sub>+)")
where
- Coprod_form: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A + B: U i"
-and
- Coprod_intro_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl a: A + B"
-and
- Coprod_intro_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr b: A + B"
-and
+ Coprod_form: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A + B: U i" and
+
+ Coprod_intro_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl a: A + B" and
+
+ Coprod_intro_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr b: A + B" and
+
Coprod_elim: "\<lbrakk>
+ u: A + B;
C: A + B \<longrightarrow> U i;
\<And>x. x: A \<Longrightarrow> c x: C (inl x);
- \<And>y. y: B \<Longrightarrow> d y: C (inr y);
- u: A + B
- \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d u: C u"
-and
+ \<And>y. y: B \<Longrightarrow> d y: C (inr y) \<rbrakk> \<Longrightarrow> ind\<^sub>+ (\<lambda> x. c x) (\<lambda>y. d y) u: C u" and
+
Coprod_comp_inl: "\<lbrakk>
+ a: A;
C: A + B \<longrightarrow> U i;
\<And>x. x: A \<Longrightarrow> c x: C (inl x);
- \<And>y. y: B \<Longrightarrow> d y: C (inr y);
- a: A
- \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d (inl a) \<equiv> c a"
-and
+ \<And>y. y: B \<Longrightarrow> d y: C (inr y) \<rbrakk> \<Longrightarrow> ind\<^sub>+ (\<lambda>x. c x) (\<lambda>y. d y) (inl a) \<equiv> c a" and
+
Coprod_comp_inr: "\<lbrakk>
+ b: B;
C: A + B \<longrightarrow> U i;
\<And>x. x: A \<Longrightarrow> c x: C (inl x);
- \<And>y. y: B \<Longrightarrow> d y: C (inr y);
- b: B
- \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d (inr b) \<equiv> d b"
-
-
-text "Admissible formation inference rules:"
-
-axiomatization where
- Coprod_wellform1: "A + B: U i \<Longrightarrow> A: U i"
-and
- Coprod_wellform2: "A + B: U i \<Longrightarrow> B: U i"
-
-
-text "Rule attribute declarations:"
-
-lemmas Coprod_intro = Coprod_intro_inl Coprod_intro_inr
+ \<And>y. y: B \<Longrightarrow> d y: C (inr y) \<rbrakk> \<Longrightarrow> ind\<^sub>+ (\<lambda>x. c x) (\<lambda>y. d y) (inr b) \<equiv> d b"
+lemmas Coprod_routine [intro] = Coprod_form Coprod_intro_inl Coprod_intro_inr Coprod_elim
lemmas Coprod_comp [comp] = Coprod_comp_inl Coprod_comp_inr
-lemmas Coprod_wellform [wellform] = Coprod_wellform1 Coprod_wellform2
-lemmas Coprod_routine [intro] = Coprod_form Coprod_intro Coprod_elim
end