aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Univalence.thy161
1 files changed, 115 insertions, 46 deletions
diff --git a/Univalence.thy b/Univalence.thy
index c6733c6..e073e50 100644
--- a/Univalence.thy
+++ b/Univalence.thy
@@ -1,72 +1,141 @@
-(*
-Title: Univalence.thy
-Author: Joshua Chen
-Date: 2018
+(********
+Isabelle/HoTT: Univalence
+Feb 2019
-Definitions of homotopy, equivalence and the univalence axiom.
-*)
+********)
theory Univalence
-imports HoTT_Methods Equality Prod Sum
+imports HoTT_Methods Prod Sum Eq
begin
-section \<open>Homotopy and equivalence\<close>
-
-definition homotopic :: "[t, tf, t, t] \<Rightarrow> t" where "homotopic A B f g \<equiv> \<Prod>x:A. (f`x) =[B x] (g`x)"
+section \<open>Homotopy\<close>
-syntax "_homotopic" :: "[t, idt, t, t, t] \<Rightarrow> t" ("(1_ ~[_:_. _]/ _)" [101, 0, 0, 0, 101] 100)
-translations "f ~[x:A. B] g" \<rightleftharpoons> "CONST homotopic A (\<lambda>x. B) f g"
+definition homotopic :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t" ("(2homotopic[_, _] _ _)" [0, 0, 1000, 1000])
+where "homotopic[A, B] f g \<equiv> \<Prod>x: A. f`x =[B x] g`x"
declare homotopic_def [comp]
-definition isequiv :: "[t, t, t] \<Rightarrow> t" ("(3isequiv[_, _]/ _)") where
- "isequiv[A, B] f \<equiv> (\<Sum>g: B \<rightarrow> A. g \<circ> f ~[x:A. A] id) \<times> (\<Sum>g: B \<rightarrow> A. f \<circ> g ~[x:B. B] id)"
+syntax "_homotopic" :: "[t, idt, t, t, t] \<Rightarrow> t" ("(1_ ~[_: _. _]/ _)" [101, 0, 0, 0, 101] 100)
+translations "f ~[x: A. B] g" \<rightleftharpoons> "(CONST homotopic) A (\<lambda>x. B) f g"
+
+syntax "_homotopic'" :: "[t, t] \<Rightarrow> t" ("(2_ ~ _)" [1000, 1000])
+
+ML \<open>val pretty_homotopic = Attrib.setup_config_bool @{binding "pretty_homotopic"} (K true)\<close>
+
+print_translation \<open>
+let fun homotopic_tr' ctxt [A, B, f, g] =
+ if Config.get ctxt pretty_homotopic
+ then Syntax.const @{syntax_const "_homotopic'"} $ f $ g
+ else @{const homotopic} $ A $ B $ f $ g
+in
+ [(@{const_syntax homotopic}, homotopic_tr')]
+end
+\<close>
+
+lemma homotopic_type:
+ assumes [intro]: "A: U i" "B: A \<leadsto> U i" "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
+ shows "f ~[x: A. B x] g: U i"
+by derive
+
+declare homotopic_type [intro]
+
+schematic_goal fun_eq_imp_homotopic:
+ assumes [intro]:
+ "A: U i" "B: A \<leadsto> U i"
+ "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
+ "p: f =[\<Prod>x: A. B x] g"
+ shows "?prf: f ~[x: A. B x] g"
+proof (path_ind' f g p)
+ show "\<And>f. f : \<Prod>(x: A). B x \<Longrightarrow> \<lambda>x: A. refl(f`x): f ~[x: A. B x] f" by derive
+qed routine
+
+definition happly :: "[t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t" ("(2happly[_, _] _ _ _)" [0, 0, 1000, 1000, 1000])
+where "happly[A, B] f g p \<equiv> indEq (\<lambda>f g. & f ~[x: A. B x] g) (\<lambda>f. \<lambda>(x: A). refl(f`x)) f g p"
+
+corollary happly_type:
+ assumes [intro]:
+ "A: U i" "B: A \<leadsto> U i"
+ "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
+ "p: f =[\<Prod>x: A. B x] g"
+ shows "happly[A, B] f g p: f ~[x: A. B x] g"
+unfolding happly_def by (derive lems: fun_eq_imp_homotopic)
+
+
+section \<open>Equivalence\<close>
+
+text \<open>For now, we define equivalence in terms of bi-invertibility.\<close>
+
+definition biinv :: "[t, t, t] \<Rightarrow> t" ("(2biinv[_, _]/ _)")
+where "biinv[A, B] f \<equiv>
+ (\<Sum>g: B \<rightarrow> A. g o[A] f ~[x:A. A] id A) \<times> (\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B)"
text \<open>
The meanings of the syntax defined above are:
-\<^item> @{term "f ~[x:A. B x] g"} expresses that @{term f} and @{term g} are homotopic functions of type @{term "\<Prod>x:A. B x"}.
-\<^item> @{term "isequiv[A, B] f"} expresses that the non-dependent function @{term f} of type @{term "A \<rightarrow> B"} is an equivalence.
+\<^item> @{term "f ~[x: A. B x] g"} expresses that @{term f} and @{term g} are homotopic functions of type @{term "\<Prod>x:A. B x"}.
+\<^item> @{term "biinv[A, B] f"} expresses that the function @{term f} of type @{term "A \<rightarrow> B"} is bi-invertible.
\<close>
-definition equivalence :: "[t, t] \<Rightarrow> t" (infix "\<simeq>" 100)
- where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. isequiv[A, B] f"
+lemma biinv_type:
+ assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
+ shows "biinv[A, B] f: U i"
+unfolding biinv_def by derive
-lemma id_isequiv:
- assumes "A: U i" "id: A \<rightarrow> A"
- shows "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[A, A] id"
-unfolding isequiv_def proof (routine add: assms)
- show "\<And>g. g: A \<rightarrow> A \<Longrightarrow> id \<circ> g ~[x:A. A] id: U i" by (derive lems: assms)
- show "<id, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. (g \<circ> id) ~[x:A. A] id" by (derive lems: assms)
- show "<id, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. (id \<circ> g) ~[x:A. A] id" by (derive lems: assms)
-qed
+declare biinv_type [intro]
-lemma equivalence_symm:
- assumes "A: U i" and "id: A \<rightarrow> A"
- shows "<id, <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>>: A \<simeq> A"
-unfolding equivalence_def proof
- show "\<And>f. f: A \<rightarrow> A \<Longrightarrow> isequiv[A, A] f: U i" by (derive lems: assms isequiv_def)
- show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[A, A] id" using assms by (rule id_isequiv)
-qed fact
+schematic_goal id_is_biinv:
+ assumes [intro]: "A: U i"
+ shows "?prf: biinv[A, A] (id A)"
+unfolding biinv_def proof (rule Sum_routine, compute)
+ show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (g o[A] id A) ~[x: A. A] (id A)" by derive
+ show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (id A o[A] g) ~[x: A. A] (id A)" by derive
+qed routine
+definition equivalence :: "[t, t] \<Rightarrow> t" (infix "\<simeq>" 100)
+where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. biinv[A, B] f"
+
+schematic_goal equivalence_symmetric:
+ assumes [intro]: "A: U i"
+ shows "?prf: A \<simeq> A"
+unfolding equivalence_def proof (rule Sum_routine)
+ show "\<And>f. f : A \<rightarrow> A \<Longrightarrow> biinv[A, A] f : U i" unfolding biinv_def by derive
+ show "id A: A \<rightarrow> A" by routine
+qed (routine add: id_is_biinv)
-section \<open>idtoeqv\<close>
-definition idtoeqv :: t where "idtoeqv \<equiv> \<^bold>\<lambda>p. <transport p, ind\<^sub>= (\<lambda>_. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p>"
+section \<open>Univalence\<close>
-text \<open>We prove that equal types are equivalent. The proof involves universe types.\<close>
+(*
+schematic_goal
+ assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B"
+ shows "?prf: biinv[A, B] (transport[id(U i), A, B] p)"
+unfolding biinv_def
+apply (rule Sum_routine) defer
+apply (rule Sum_intro)
+ have
+ "transport[id(U i), A, B] p: (id (U i))`A \<rightarrow> (id (U i))`B"
+ by (derive lems: transport_type[where ?A="U i"]
+ moreover have
+ "(id (U i))`A \<rightarrow> (id (U i))`B \<equiv> A \<rightarrow> B" by deriv
+ ultimately have [intro]:
+ "transport[id(U i), A, B] p: A \<rightarrow> B" by simp
+
+ show "\<Sum>g: B \<rightarrow> A. (transport[id(U i), A, B] p o[B] g) ~[x: B. B] (id B) : U i"
+ by deriv
+
-theorem
- assumes "A: U i" and "B: U i"
- shows "idtoeqv: (A =[U i] B) \<rightarrow> A \<simeq> B"
-unfolding idtoeqv_def equivalence_def proof (routine add: assms)
+schematic_goal type_eq_imp_equiv:
+ assumes [intro]: "A: U i" "B: U i"
+ shows "?prf: (A =[U i] B) \<rightarrow> A \<simeq> B"
+unfolding equivalence_def
+apply (rule Prod_routine, rule Sum_routine)
+prefer 2
show *: "\<And>f. f: A \<rightarrow> B \<Longrightarrow> isequiv[A, B] f: U i"
- unfolding isequiv_def by (derive lems: assms)
+ unfolding isequiv_def by (derive lems: assms
show "\<And>p. p: A =[U i] B \<Longrightarrow> transport p: A \<rightarrow> B"
- by (derive lems: assms transport_type[where ?i="Suc i"])
- \<comment> \<open>Instantiate @{thm transport_type} with a suitable universe level here...\<close>
+ by (derive lems: assms transport_type[where ?i="Suc i"] \<comment> \<open>Instantiate @{thm transport_type} with a suitable universe level here...\<close>
show "\<And>p. p: A =[U i] B \<Longrightarrow> ind\<^sub>= (\<lambda>_. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p: isequiv[A, B] (transport p)"
proof (elim Equal_elim)
@@ -75,14 +144,14 @@ unfolding idtoeqv_def equivalence_def proof (routine add: assms)
\<comment> \<open>...and also here.\<close>
show "\<And>A B p. \<lbrakk>A: U i; B: U i; p: A =[U i] B\<rbrakk> \<Longrightarrow> isequiv[A, B] (transport p): U i"
- unfolding isequiv_def by (derive lems: assms transport_type)
+ unfolding isequiv_def by (derive lems: assms transport_type
qed fact+
-qed (derive lems: assms)
+qed (derive lems: assms
section \<open>The univalence axiom\<close>
axiomatization univalence :: "[t, t] \<Rightarrow> t" where UA: "univalence A B: isequiv[A, B] idtoeqv"
-
+*)
end