aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Eq.thy88
1 files changed, 70 insertions, 18 deletions
diff --git a/Eq.thy b/Eq.thy
index a89e56b..c6394dc 100644
--- a/Eq.thy
+++ b/Eq.thy
@@ -72,9 +72,9 @@ section \<open>Properties of equality\<close>
subsection \<open>Symmetry (path inverse)\<close>
definition inv :: "[t, t, t, t] \<Rightarrow> t"
-where "inv A x y p \<equiv> indEq (\<lambda>x y. ^(y =[A] x)) (\<lambda>x. refl x) x y p"
+where "inv A x y p \<equiv> indEq (\<lambda>x y. &(y =[A] x)) (\<lambda>x. refl x) x y p"
-syntax "_inv" :: "[t, t, t, t] \<Rightarrow> t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000])
+syntax "_inv" :: "[t, t, t, t] \<Rightarrow> t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000] 999)
translations "inv[A, x, y] p" \<rightleftharpoons> "(CONST inv) A x y p"
syntax "_inv'" :: "t \<Rightarrow> t" ("~_" [1000])
@@ -117,11 +117,12 @@ by
definition pathcomp :: "[t, t, t, t, t, t] \<Rightarrow> t"
where
"pathcomp A x y z p q \<equiv> (indEq
- (\<lambda>x y _. \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z)
- (\<lambda>x. \<lambda>z: A. \<lambda>q: x =[A] z. indEq (\<lambda>x z _. x =[A] z) (\<lambda>x. refl x) x z q)
+ (\<lambda>x y. & \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z)
+ (\<lambda>x. \<lambda>z: A. \<lambda>q: x =[A] z. indEq (\<lambda>x z. & x =[A] z) (\<lambda>x. refl x) x z q)
x y p)`z`q"
-syntax "_pathcomp" :: "[t, t, t, t, t, t] \<Rightarrow> t" ("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000])
+syntax "_pathcomp" :: "[t, t, t, t, t, t] \<Rightarrow> t"
+ ("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000] 999)
translations "pathcomp[A, x, y, z] p q" \<rightleftharpoons> "(CONST pathcomp) A x y z p q"
syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" (infixl "^" 110)
@@ -139,12 +140,12 @@ in
end
\<close>
-lemma pathcomp_type:
+corollary pathcomp_type:
assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z"
shows "pathcomp[A, x, y, z] p q: x =[A] z"
unfolding pathcomp_def by (derive lems: transitivity)
-lemma pathcomp_comp:
+corollary pathcomp_comp:
assumes [intro]: "A: U i" "a: A"
shows "pathcomp[A, a, a, a] (refl a) (refl a) \<equiv> refl a"
unfolding pathcomp_def by (derive lems: transitivity)
@@ -276,7 +277,7 @@ in
end
\<close>
-lemma ap_type:
+corollary ap_type:
assumes
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
@@ -379,15 +380,15 @@ section \<open>Transport\<close>
schematic_goal transport:
assumes [intro]:
- "A: U i" "P: A \<leadsto> U i"
+ "A: U i" "P: A \<rightarrow> U j"
"x: A" "y: A" "p: x =[A] y"
- shows "?prf: P x \<rightarrow> P y"
+ shows "?prf: P`x \<rightarrow> P`y"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> id(P x): P x \<rightarrow> P x" by derive
+ show "\<And>x. x: A \<Longrightarrow> id(P`x): P`x \<rightarrow> P`x" by derive
qed routine
-definition transport :: "[t \<Rightarrow> t, t, t, t] \<Rightarrow> t" ("(2transport[_, _, _] _)" [0, 0, 0, 1000])
-where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b _. P a \<rightarrow> P b) (\<lambda>x. id (P x)) x y p"
+definition transport :: "[t, t, t, t] \<Rightarrow> t" ("(2transport[_, _, _] _)" [0, 0, 0, 1000])
+where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b. & (P`a \<rightarrow> P`b)) (\<lambda>x. id (P`x)) x y p"
syntax "_transport'" :: "[t, t] \<Rightarrow> t" ("(2_*)" [1000])
@@ -403,19 +404,70 @@ in
end
\<close>
-lemma transport_type:
- assumes "A: U i" "P: A \<leadsto> U i" "x: A" "y: A" "p: x =[A] y"
- shows "transport[P, x, y] p: P x \<rightarrow> P y"
+corollary transport_type:
+ assumes "A: U i" "P: A \<rightarrow> U j" "x: A" "y: A" "p: x =[A] y"
+ shows "transport[P, x, y] p: P`x \<rightarrow> P`y"
unfolding transport_def using assms by (rule transport)
lemma transport_comp:
- assumes [intro]: "A: U i" "P: A \<leadsto> U i" "a: A"
- shows "transport P a a (refl a) \<equiv> id (P a)"
+ assumes [intro]: "A: U i" "P: A \<rightarrow> U j" "a: A"
+ shows "transport P a a (refl a) \<equiv> id (P`a)"
unfolding transport_def by derive
declare
transport_type [intro]
transport_comp [comp]
+schematic_goal transport_invl:
+ assumes [intro]:
+ "A: U i" "P: A \<rightarrow> U j"
+ "x: A" "y: A" "p: x =[A] y"
+ shows "?prf:
+ (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) =[P`x \<rightarrow> P`x] id(P`x)"
+proof (path_ind' x y p)
+ fix x assume [intro]: "x: A"
+ show
+ "refl (id (P`x)) :
+ transport[P, x, x] (inv[A, x, x] (refl x)) o[P`x] (transport[P, x, x] (refl x)) =[P`x \<rightarrow> P`x]
+ id (P`x)"
+ by derive
+
+ fix y p assume [intro]: "y: A" "p: x =[A] y"
+ have [intro]:
+ "transport[P, y, x] (inv[A, x, y] p) o[P`x] transport[P, x, y] p : P`x \<rightarrow> P`x"
+ proof show "transport[P, x, y] p: P`x \<rightarrow> P`y" by routine qed routine
+
+ show
+ "transport[P, y, x] (inv[A, x, y] p) o[P`x] transport[P, x, y] p =[P`x \<rightarrow> P`x] id (P`x): U j"
+ by derive
+qed
+
+schematic_goal transport_invr:
+ assumes [intro]:
+ "A: U i" "P: A \<rightarrow> U j"
+ "x: A" "y: A" "p: x =[A] y"
+ shows "?prf:
+ (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) =[P`y \<rightarrow> P`y] id(P`y)"
+proof (path_ind' x y p)
+ fix x assume [intro]: "x: A"
+ show
+ "refl (id (P`x)) :
+ (transport[P, x, x] (refl x)) o[P`x] transport[P, x, x] (inv[A, x, x] (refl x)) =[P`x \<rightarrow> P`x]
+ id (P`x)"
+ by derive
+
+ fix y p assume [intro]: "y: A" "p: x =[A] y"
+ have [intro]:
+ "transport[P, x, y] p o[P`y] transport[P, y, x] (inv[A, x, y] p): P`y \<rightarrow> P`y"
+ proof show "transport[P, x, y] p: P`x \<rightarrow> P`y" by routine qed routine
+
+ show
+ "transport[P, x, y] p o[P`y] transport[P, y, x] (inv[A, x, y] p) =[P`y \<rightarrow> P`y] id (P`y): U j"
+ by derive
+qed
+
+declare
+ transport_invl [intro]
+ transport_invr [intro]
end