diff options
Diffstat (limited to '')
-rw-r--r-- | ROOT | 1 | ||||
-rw-r--r-- | hott/Eckmann_Hilton.thy | 179 | ||||
-rw-r--r-- | hott/Identity.thy | 16 |
3 files changed, 193 insertions, 3 deletions
@@ -34,3 +34,4 @@ session HoTT in hott = Spartan + Nat More_Types More_List + Eckmann_Hilton diff --git a/hott/Eckmann_Hilton.thy b/hott/Eckmann_Hilton.thy index 7355fde..09b2c8f 100644 --- a/hott/Eckmann_Hilton.thy +++ b/hott/Eckmann_Hilton.thy @@ -3,19 +3,192 @@ imports Identity begin -Lemma (derive) left_whisker: +section \<open>Whiskering and horizontal composition\<close> + +Lemma (derive) right_whisker: assumes "A: U i" "a: A" "b: A" "c: A" shows "\<lbrakk>p: a = b; q: a = b; r: b = c; \<alpha>: p =\<^bsub>a = b\<^esub> q\<rbrakk> \<Longrightarrow> p \<bullet> r = q \<bullet> r" apply (eq r) - focus prems prms vars x s t \<gamma> + focus prems vars x s t \<gamma> proof - have "t \<bullet> refl x = t" by (rule pathcomp_refl) - also have ".. = s" by (rule \<open>\<gamma>:_\<close>) + also have ".. = s" by (rule \<open>\<gamma>: t = s\<close>) also have ".. = s \<bullet> refl x" by (rule pathcomp_refl[symmetric]) finally show "t \<bullet> refl x = s \<bullet> refl x" by this qed done +Lemma (derive) left_whisker: + assumes "A: U i" "a: A" "b: A" "c: A" + shows "\<lbrakk>p: b = c; q: b = c; r: a = b; \<alpha>: p =\<^bsub>b = c\<^esub> q\<rbrakk> \<Longrightarrow> r \<bullet> p = r \<bullet> q" + apply (eq r) + focus prems prms vars x s t \<gamma> + proof - + have "refl x \<bullet> t = t" by (rule refl_pathcomp) + also have ".. = s" by (rule \<open>\<gamma>:_ t = s\<close>) + also have ".. = refl x \<bullet> s" by (rule refl_pathcomp[symmetric]) + finally show "refl x \<bullet> t = refl x \<bullet> s" by this + qed + done + +text \<open>Some notation, or the proofs start getting unwieldy.\<close> + +definition right_whisker_i (infix "\<bullet>\<^sub>r\<^bsub>_\<^esub>" 121) + where [implicit]: "\<alpha> \<bullet>\<^sub>r\<^bsub>a\<^esub> r \<equiv> right_whisker ? a ? ? ? ? r \<alpha>" + +definition left_whisker_i (infix "\<bullet>\<^sub>l\<^bsub>_\<^esub>" 121) + where [implicit]: "r \<bullet>\<^sub>l\<^bsub>c\<^esub> \<alpha> \<equiv> left_whisker ? ? ? c ? ? r \<alpha>" + +translations + "\<alpha> \<bullet>\<^sub>r\<^bsub>a\<^esub> r" \<leftharpoondown> "CONST right_whisker A a b c p q r \<alpha>" + "r \<bullet>\<^sub>l\<^bsub>c\<^esub> \<alpha>" \<leftharpoondown> "CONST left_whisker A a b c p q r \<alpha>" + +Lemma whisker_refl [comps]: + assumes "A: U i" "a: A" "b: A" + shows "\<lbrakk>p: a = b; q: a = b; \<alpha>: p =\<^bsub>a = b\<^esub> q\<rbrakk> \<Longrightarrow> + \<alpha> \<bullet>\<^sub>r\<^bsub>a\<^esub> (refl b) \<equiv> ru p \<bullet> \<alpha> \<bullet> (ru q)\<inverse>" + unfolding right_whisker_def by reduce + +Lemma refl_whisker [comps]: + assumes "A: U i" "a: A" "b: A" + shows "\<lbrakk>p: a = b; q: a = b; \<alpha>: p = q\<rbrakk> \<Longrightarrow> + (refl a) \<bullet>\<^sub>l\<^bsub>b\<^esub> \<alpha> \<equiv> (lu p) \<bullet> \<alpha> \<bullet> (lu q)\<inverse>" + unfolding left_whisker_def by reduce + +text \<open>Define the conditions under which horizontal composition is well-defined:\<close> + +locale horiz_pathcomposable = +fixes + i A a b c p q r s +assumes assums: + "A: U i" "a: A" "b: A" "c: A" + "p: a =\<^bsub>A\<^esub> b" "q: a =\<^bsub>A\<^esub> b" + "r: b =\<^bsub>A\<^esub> c" "s: b =\<^bsub>A\<^esub> c" +begin + + Lemma (derive) horiz_pathcomp: + notes assums + shows "\<lbrakk>\<alpha>: p = q; \<beta>: r = s\<rbrakk> \<Longrightarrow> ?prf \<alpha> \<beta>: p \<bullet> r = q \<bullet> s" + proof (rule pathcomp) + show "\<alpha>: p = q \<Longrightarrow> p \<bullet> r = q \<bullet> r" by (rule right_whisker) + show "\<beta>: r = s \<Longrightarrow> .. = q \<bullet> s" by (rule left_whisker) + qed typechk + + text \<open>A second horizontal composition:\<close> + + Lemma (derive) horiz_pathcomp': + notes assums + shows "\<lbrakk>\<alpha>: p = q; \<beta>: r = s\<rbrakk> \<Longrightarrow> ?prf \<alpha> \<beta>: p \<bullet> r = q \<bullet> s" + proof (rule pathcomp) + show "\<beta>: r = s \<Longrightarrow> p \<bullet> r = p \<bullet> s" by (rule left_whisker) + show "\<alpha>: p = q \<Longrightarrow> .. = q \<bullet> s" by (rule right_whisker) + qed typechk + + thm horiz_pathcomp_def (* horiz_pathcomp ?\<alpha> ?\<beta> \<equiv> ?\<alpha> \<bullet>\<^sub>r\<^bsub>a\<^esub> r \<bullet> (q \<bullet>\<^sub>l\<^bsub>c\<^esub> ?\<beta>) *) + thm horiz_pathcomp'_def (* horiz_pathcomp' ?\<alpha> ?\<beta> \<equiv> p \<bullet>\<^sub>l\<^bsub>c\<^esub> ?\<beta> \<bullet> (?\<alpha> \<bullet>\<^sub>r\<^bsub>a\<^esub> s) *) + + abbreviation horiz_pathcomp_abbr :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> (infix "\<star>" 121) + where "\<alpha> \<star> \<beta> \<equiv> horiz_pathcomp \<alpha> \<beta>" + + abbreviation horiz_pathcomp'_abbr (infix "\<star>''" 121) + where "\<alpha> \<star>' \<beta> \<equiv> horiz_pathcomp' \<alpha> \<beta>" + + Lemma (derive) horiz_pathcomp_eq_horiz_pathcomp': + notes assums + shows "\<lbrakk>\<alpha>: p = q; \<beta>: r = s\<rbrakk> \<Longrightarrow> \<alpha> \<star> \<beta> = \<alpha> \<star>' \<beta>" + unfolding horiz_pathcomp_def horiz_pathcomp'_def + apply (eq \<alpha>, eq \<beta>) + focus vars p apply (eq p) + \<guillemotright> vars _ q by (eq q) (reduce; refl) + done + done + +end + + +section \<open>Loop space\<close> + +definition \<Omega> where "\<Omega> A a \<equiv> a =\<^bsub>A\<^esub> a" +definition \<Omega>2 where "\<Omega>2 A a \<equiv> \<Omega> (\<Omega> A a) (refl a)" + +Lemma \<Omega>2_alt_def: + "\<Omega>2 A a \<equiv> refl a = refl a" + unfolding \<Omega>2_def \<Omega>_def . + + +section \<open>Eckmann-Hilton\<close> + + +context +fixes A a +assumes "A: U i" "a: A" +begin + + interpretation \<Omega>2: + horiz_pathcomposable i A a a a "refl a" "refl a" "refl a" "refl a" + by unfold_locales typechk+ + + abbreviation horiz_pathcomp (infix "\<star>" 121) + where "\<alpha> \<star> \<beta> \<equiv> \<Omega>2.horiz_pathcomp \<alpha> \<beta>" + + abbreviation horiz_pathcomp' (infix "\<star>''" 121) + where "\<alpha> \<star>' \<beta> \<equiv> \<Omega>2.horiz_pathcomp' \<alpha> \<beta>" + + Lemma (derive) pathcomp_eq_horiz_pathcomp: + assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" + shows "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>" + unfolding \<Omega>2.horiz_pathcomp_def + using assms[unfolded \<Omega>2_alt_def] + proof (reduce, rule pathinv) + \<comment> \<open>Propositional equality rewriting needs to be improved\<close> + have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>" by (rule pathcomp_refl) + also have ".. = \<alpha>" by (rule refl_pathcomp) + finally have eq\<alpha>: "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = \<alpha>" by this + + have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>" by (rule pathcomp_refl) + also have ".. = \<beta>" by (rule refl_pathcomp) + finally have eq\<beta>: "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = \<beta>" by this + + have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) \<bullet> (refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a)) + = \<alpha> \<bullet> (refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a))" by (rule right_whisker) (rule eq\<alpha>) + also have ".. = \<alpha> \<bullet> \<beta>" by (rule left_whisker) (rule eq\<beta>) + finally show "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) \<bullet> (refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a)) + = \<alpha> \<bullet> \<beta>" by this + qed + + Lemma (derive) pathcomp_eq_horiz_pathcomp': + assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" + shows "\<alpha> \<star>' \<beta> = \<beta> \<bullet> \<alpha>" + unfolding \<Omega>2.horiz_pathcomp'_def + using assms[unfolded \<Omega>2_alt_def] + proof reduce + have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>" by (rule pathcomp_refl) + also have ".. = \<beta>" by (rule refl_pathcomp) + finally have eq\<beta>: "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = \<beta>" by this + + have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>" by (rule pathcomp_refl) + also have ".. = \<alpha>" by (rule refl_pathcomp) + finally have eq\<alpha>: "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = \<alpha>" by this + + have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) \<bullet> (refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a)) + = \<beta> \<bullet> (refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a))" by (rule right_whisker) (rule eq\<beta>) + also have ".. = \<beta> \<bullet> \<alpha>" by (rule left_whisker) (rule eq\<alpha>) + finally show "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) \<bullet> (refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a)) + = \<beta> \<bullet> \<alpha>" by this + qed + + Lemma (derive) eckmann_hilton: + assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" + shows "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>" + using assms[unfolded \<Omega>2_alt_def] + proof - + have "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>" by (rule pathcomp_eq_horiz_pathcomp) + also have ".. = \<alpha> \<star>' \<beta>" by (rule \<Omega>2.horiz_pathcomp_eq_horiz_pathcomp'[simplified pathcomp_comp]) + also have ".. = \<beta> \<bullet> \<alpha>" by (rule pathcomp_eq_horiz_pathcomp') + finally show "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>" by this (reduce add: \<Omega>2.horiz_pathcomp_def \<Omega>2.horiz_pathcomp'_def) + qed + +end end diff --git a/hott/Identity.thy b/hott/Identity.thy index d60f4c2..d664fbc 100644 --- a/hott/Identity.thy +++ b/hott/Identity.thy @@ -143,6 +143,22 @@ Lemma (derive) pathcomp_refl: apply (reduce; intros) done +definition [implicit]: "ru p \<equiv> pathcomp_refl ? ? ? p" +definition [implicit]: "lu p \<equiv> refl_pathcomp ? ? ? p" +translations + "CONST ru p" \<leftharpoondown> "CONST pathcomp_refl A x y p" + "CONST lu p" \<leftharpoondown> "CONST refl_pathcomp A x y p" + +Lemma lu_refl [comps]: + assumes "A: U i" "x: A" + shows "lu (refl x) \<equiv> refl (refl x)" + unfolding refl_pathcomp_def by reduce + +Lemma ru_refl [comps]: + assumes "A: U i" "x: A" + shows "ru (refl x) \<equiv> refl (refl x)" + unfolding pathcomp_refl_def by reduce + Lemma (derive) inv_pathcomp: assumes "A: U i" "x: A" "y: A" "p: x =\<^bsub>A\<^esub> y" shows "p\<inverse> \<bullet> p = refl y" |