diff options
Diffstat (limited to '')
-rw-r--r-- | HoTT.thy | 64 | ||||
-rw-r--r-- | HoTT_Theorems.thy | 10 |
2 files changed, 48 insertions, 26 deletions
@@ -30,7 +30,7 @@ theorem equal_type_element: assumes "A \<equiv> B" and "x : A" shows "x : B" using assms by simp -lemmas type_equality [intro] = equal_types equal_types[rotated] equal_type_element equal_type_element[rotated] +lemmas type_equality [intro, simp] = equal_types equal_types[rotated] equal_type_element equal_type_element[rotated] section \<open>Type families\<close> text "Type families are implemented using meta-level lambda expressions \<open>P::Term \<Rightarrow> Term\<close> that further satisfy the following property." @@ -46,14 +46,18 @@ axiomatization Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" syntax - "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30) - "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 30) + "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30) + "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 30) + "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3PROD _:_./ _)" 30) + "_LAMBDA_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3%%_:_./ _)" 30) translations "\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)" "\<^bold>\<lambda>x:A. b" \<rightleftharpoons> "CONST lambda A (\<lambda>x. b)" -(* The above syntax translations bind the x in the expressions B, b. *) + "PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)" + "%%x:A. b" \<rightharpoonup> "CONST lambda A (\<lambda>x. b)" + (* The above syntax translations bind the x in the expressions B, b. *) -abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 10) +abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 80) where "A\<rightarrow>B \<equiv> \<Prod>_:A. B" axiomatization @@ -71,7 +75,7 @@ and and Prod_uniq [simp]: "\<And>A f::Term. \<^bold>\<lambda>x:A. (f`x) \<equiv> f" -lemmas Prod_formation = Prod_form Prod_form[rotated] +lemmas Prod_formation [intro] = Prod_form Prod_form[rotated] text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)." @@ -80,11 +84,13 @@ subsection \<open>Dependent pair/sum\<close> axiomatization Sum :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" syntax - "_Sum" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20) + "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20) + "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3SUM _:_./ _)" 20) translations "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)" + "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)" -abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) +abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) where "A\<times>B \<equiv> \<Sum>_:A. B" axiomatization @@ -102,7 +108,7 @@ and and Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). indSum(C)`f`(a,b) \<equiv> f`a`b" -lemmas Sum_formation = Sum_form Sum_form[rotated] +lemmas Sum_formation [intro] = Sum_form Sum_form[rotated] text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible. Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum." @@ -145,35 +151,51 @@ subsection \<open>Equality type\<close> axiomatization Equal :: "[Term, Term, Term] \<Rightarrow> Term" syntax - "_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)") + "_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 101] 100) + "_EQUAL_ASCII" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =[_]/ _)" [101, 101] 100) translations "a =\<^sub>A b" \<rightleftharpoons> "CONST Equal A a b" + "a =[A] b" \<rightharpoonup> "CONST Equal A a b" axiomatization refl :: "Term \<Rightarrow> Term" and - indEqual :: "([Term, Term, Term] \<Rightarrow> Term) \<Rightarrow> Term" + indEqual :: "[Term, [Term, Term, Term] \<Rightarrow> Term] \<Rightarrow> Term" ("(indEqual[_])") where Equal_form: "\<And>A a b::Term. \<lbrakk>A : U; a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U" + (* Should I write a permuted version \<open>\<lbrakk>A : U; b : A; a : A\<rbrakk> \<Longrightarrow> \<dots>\<close>? *) and Equal_intro [intro]: "\<And>A x::Term. x : A \<Longrightarrow> refl(x) : x =\<^sub>A x" and Equal_elim [elim]: - "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term) (b::Term) (p::Term). \<lbrakk> - \<And>x y p::Term. \<lbrakk>x : A; y : A; p : x =\<^sub>A y\<rbrakk> \<Longrightarrow> C(x)(y)(p) : U; - f : \<Prod>x:A. C(x)(x)(refl(x)); - a : A; - b : A; - p : a =\<^sub>A b\<rbrakk> \<Longrightarrow> indEqual(C)`f`a`b`p : C(a)(b)(p)" + "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term) (b::Term) (p::Term). + \<lbrakk> \<And>x y::Term. \<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<rightarrow> U; + f : \<Prod>x:A. C(x)(x)(refl(x)); + a : A; + b : A; + p : a =\<^sub>A b \<rbrakk> + \<Longrightarrow> indEqual[A](C)`f`a`b`p : C(a)(b)(p)" and Equal_comp [simp]: - "\<And>(C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term). indEqual(C)`f`a`a`refl(a) \<equiv> f`a" + "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term). indEqual[A](C)`f`a`a`refl(a) \<equiv> f`a" + +lemmas Equal_formation [intro] = Equal_form Equal_form[rotated 1] Equal_form[rotated 2] subsubsection \<open>Properties of equality\<close> -text "Inverse" +text "Symmetry/Path inverse" + +definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])") + where "inv[A,x,y] \<equiv> indEqual[A](\<lambda>x y _. y =\<^sub>A x)`(\<^bold>\<lambda>x:A. refl(x))`x`y" + +lemma inv_comp: "\<And>A a::Term. a : A \<Longrightarrow> inv[A,a,a]`refl(a) \<equiv> refl(a)" unfolding inv_def by simp + +text "Transitivity/Path composition" + +definition compose' :: "Term \<Rightarrow> Term" ("(1compose''[_])") + where "compose'[A] \<equiv> indEqual[A](\<lambda>x y _. \<Prod>z:A. \<Prod>q: y =\<^sub>A z. x =\<^sub>A z)`(indEqual[A](\<lambda>x z _. x =\<^sub>A z)`(\<^bold>\<lambda>x:A. refl(x)))" + +lemma compose'_comp: "a : A \<Longrightarrow> compose'[A]`a`a`refl(a)`a`refl(a) \<equiv> refl(a)" unfolding compose'_def by simp -definition inv :: "Term \<Rightarrow> Term" ("(_\<^sup>-\<^sup>1)") - where "inv \<equiv> " (* Tra la la.. *) end diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy index 52e1b32..5578bf8 100644 --- a/HoTT_Theorems.thy +++ b/HoTT_Theorems.thy @@ -57,11 +57,11 @@ proposition wellformed_currying: "B: A \<rightarrow> U" and "\<And>x::Term. C(x): B(x) \<rightarrow> U" shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U" -proof (rule Prod_formation) +proof fix x::Term assume *: "x : A" show "\<Prod>y:B(x). C x y : U" - proof (rule Prod_formation) + proof show "B(x) : U" using * by (rule assms) qed (rule assms) qed (rule assms) @@ -78,15 +78,15 @@ proposition triply_curried: "\<And>x y::Term. y : B(x) \<Longrightarrow> C(x)(y) : U" and "\<And>x y z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U" -proof (rule Prod_formation) +proof fix x::Term assume 1: "x : A" show "\<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U" - proof (rule Prod_formation) + proof show "B(x) : U" using 1 by (rule assms) fix y::Term assume 2: "y : B(x)" show "\<Prod>z:C(x)(y). D(x)(y)(z) : U" - proof (rule Prod_formation) + proof show "C x y : U" using 2 by (rule assms) show "\<And>z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" by (rule assms) qed |