aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Eq.thy26
-rw-r--r--Prod.thy4
2 files changed, 16 insertions, 14 deletions
diff --git a/Eq.thy b/Eq.thy
index c6394dc..8814c1f 100644
--- a/Eq.thy
+++ b/Eq.thy
@@ -380,15 +380,15 @@ section \<open>Transport\<close>
schematic_goal transport:
assumes [intro]:
- "A: U i" "P: A \<rightarrow> U j"
+ "P: A \<rightarrow> U j" "A: U i"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: P`x \<rightarrow> P`y"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> id(P`x): P`x \<rightarrow> P`x" by derive
+ show "\<And>x. x: A \<Longrightarrow> id P`x: P`x \<rightarrow> P`x" by derive
qed routine
definition transport :: "[t, t, t, t] \<Rightarrow> t" ("(2transport[_, _, _] _)" [0, 0, 0, 1000])
-where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b. & (P`a \<rightarrow> P`b)) (\<lambda>x. id (P`x)) x y p"
+where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b. & (P`a \<rightarrow> P`b)) (\<lambda>x. id P`x) x y p"
syntax "_transport'" :: "[t, t] \<Rightarrow> t" ("(2_*)" [1000])
@@ -405,13 +405,13 @@ end
\<close>
corollary transport_type:
- assumes "A: U i" "P: A \<rightarrow> U j" "x: A" "y: A" "p: x =[A] y"
+ assumes "P: A \<rightarrow> U j" "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "transport[P, x, y] p: P`x \<rightarrow> P`y"
unfolding transport_def using assms by (rule transport)
lemma transport_comp:
assumes [intro]: "A: U i" "P: A \<rightarrow> U j" "a: A"
- shows "transport P a a (refl a) \<equiv> id (P`a)"
+ shows "transport P a a (refl a) \<equiv> id P`a"
unfolding transport_def by derive
declare
@@ -423,13 +423,13 @@ schematic_goal transport_invl:
"A: U i" "P: A \<rightarrow> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf:
- (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) =[P`x \<rightarrow> P`x] id(P`x)"
+ (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) =[P`x \<rightarrow> P`x] id P`x"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show
- "refl (id (P`x)) :
+ "refl (id P`x) :
transport[P, x, x] (inv[A, x, x] (refl x)) o[P`x] (transport[P, x, x] (refl x)) =[P`x \<rightarrow> P`x]
- id (P`x)"
+ id P`x"
by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
@@ -438,7 +438,7 @@ proof (path_ind' x y p)
proof show "transport[P, x, y] p: P`x \<rightarrow> P`y" by routine qed routine
show
- "transport[P, y, x] (inv[A, x, y] p) o[P`x] transport[P, x, y] p =[P`x \<rightarrow> P`x] id (P`x): U j"
+ "transport[P, y, x] (inv[A, x, y] p) o[P`x] transport[P, x, y] p =[P`x \<rightarrow> P`x] id P`x: U j"
by derive
qed
@@ -447,13 +447,13 @@ schematic_goal transport_invr:
"A: U i" "P: A \<rightarrow> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf:
- (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) =[P`y \<rightarrow> P`y] id(P`y)"
+ (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) =[P`y \<rightarrow> P`y] id P`y"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show
- "refl (id (P`x)) :
+ "refl (id P`x) :
(transport[P, x, x] (refl x)) o[P`x] transport[P, x, x] (inv[A, x, x] (refl x)) =[P`x \<rightarrow> P`x]
- id (P`x)"
+ id P`x"
by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
@@ -462,7 +462,7 @@ proof (path_ind' x y p)
proof show "transport[P, x, y] p: P`x \<rightarrow> P`y" by routine qed routine
show
- "transport[P, x, y] p o[P`y] transport[P, y, x] (inv[A, x, y] p) =[P`y \<rightarrow> P`y] id (P`y): U j"
+ "transport[P, x, y] p o[P`y] transport[P, y, x] (inv[A, x, y] p) =[P`y \<rightarrow> P`y] id P`y: U j"
by derive
qed
diff --git a/Prod.thy b/Prod.thy
index 2cb62e4..aeddc49 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -117,7 +117,9 @@ lemma compose_assoc:
shows "(h o[B] g) o[A] f \<equiv> h o[A] g o[A] f"
unfolding compose_def by (derive lems: assms cong)
-abbreviation id :: "t \<Rightarrow> t" where "id A \<equiv> \<lambda>x: A. x"
+abbreviation id :: "t \<Rightarrow> t" ("(id _)" [115] 114) where "id A \<equiv> \<lambda>x: A. x"
+
+lemma id_type [intro]: "\<And>A. A: U i \<Longrightarrow> id A: A \<rightarrow> A" by derive
section \<open>Universal quantification\<close>