diff options
Diffstat (limited to '')
-rw-r--r-- | Coprod.thy | 34 | ||||
-rw-r--r-- | Empty.thy | 4 | ||||
-rw-r--r-- | Equal.thy | 22 | ||||
-rw-r--r-- | EqualProps.thy | 85 | ||||
-rw-r--r-- | HoTT_Base.thy | 14 | ||||
-rw-r--r-- | Nat.thy | 28 | ||||
-rw-r--r-- | Prod.thy | 22 | ||||
-rw-r--r-- | ProdProps.thy | 12 | ||||
-rw-r--r-- | Proj.thy | 28 | ||||
-rw-r--r-- | Sum.thy | 24 | ||||
-rw-r--r-- | Unit.thy | 4 |
11 files changed, 138 insertions, 139 deletions
@@ -17,40 +17,40 @@ axiomatization inr :: "Term \<Rightarrow> Term" and indCoprod :: "[Term \<Rightarrow> Term, Term \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>+)") where - Coprod_form: "\<lbrakk>A: U(i); B: U(i)\<rbrakk> \<Longrightarrow> A + B: U(i)" + Coprod_form: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A + B: U i" and - Coprod_intro_inl: "\<lbrakk>a: A; B: U(i)\<rbrakk> \<Longrightarrow> inl(a): A + B" + Coprod_intro_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl a: A + B" and - Coprod_intro_inr: "\<lbrakk>b: B; A: U(i)\<rbrakk> \<Longrightarrow> inr(b): A + B" + Coprod_intro_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr b: A + B" and Coprod_elim: "\<lbrakk> - C: A + B \<longrightarrow> U(i); - \<And>x. x: A \<Longrightarrow> c(x): C(inl(x)); - \<And>y. y: B \<Longrightarrow> d(y): C(inr(y)); + C: A + B \<longrightarrow> U i; + \<And>x. x: A \<Longrightarrow> c x: C (inl x); + \<And>y. y: B \<Longrightarrow> d y: C (inr y); u: A + B - \<rbrakk> \<Longrightarrow> ind\<^sub>+(c)(d)(u) : C(u)" + \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d u : C u" and Coprod_comp_inl: "\<lbrakk> - C: A + B \<longrightarrow> U(i); - \<And>x. x: A \<Longrightarrow> c(x): C(inl(x)); - \<And>y. y: B \<Longrightarrow> d(y): C(inr(y)); + C: A + B \<longrightarrow> U i; + \<And>x. x: A \<Longrightarrow> c x: C (inl x); + \<And>y. y: B \<Longrightarrow> d y: C (inr y); a: A - \<rbrakk> \<Longrightarrow> ind\<^sub>+(c)(d)(inl(a)) \<equiv> c(a)" + \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d (inl a) \<equiv> c a" and Coprod_comp_inr: "\<lbrakk> - C: A + B \<longrightarrow> U(i); - \<And>x. x: A \<Longrightarrow> c(x): C(inl(x)); - \<And>y. y: B \<Longrightarrow> d(y): C(inr(y)); + C: A + B \<longrightarrow> U i; + \<And>x. x: A \<Longrightarrow> c x: C (inl x); + \<And>y. y: B \<Longrightarrow> d y: C (inr y); b: B - \<rbrakk> \<Longrightarrow> ind\<^sub>+(c)(d)(inr(b)) \<equiv> d(b)" + \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d (inr b) \<equiv> d b" text "Admissible formation inference rules:" axiomatization where - Coprod_wellform1: "A + B: U(i) \<Longrightarrow> A: U(i)" + Coprod_wellform1: "A + B: U i \<Longrightarrow> A: U i" and - Coprod_wellform2: "A + B: U(i) \<Longrightarrow> B: U(i)" + Coprod_wellform2: "A + B: U i \<Longrightarrow> B: U i" text "Rule attribute declarations:" @@ -17,9 +17,9 @@ axiomatization Empty :: Term ("\<zero>") and indEmpty :: "Term \<Rightarrow> Term" ("(1ind\<^sub>\<zero>)") where - Empty_form: "\<zero>: U(O)" + Empty_form: "\<zero>: U O" and - Empty_elim: "\<lbrakk>C: \<zero> \<longrightarrow> U(i); z: \<zero>\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero>(z): C(z)" + Empty_elim: "\<lbrakk>C: \<zero> \<longrightarrow> U i; z: \<zero>\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero> z: C z" text "Rule attribute declarations:" @@ -27,33 +27,33 @@ translations section \<open>Type rules\<close> axiomatization where - Equal_form: "\<lbrakk>A: U(i); a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U(i)" + Equal_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U i" and - Equal_intro: "a : A \<Longrightarrow> refl(a): a =\<^sub>A a" + Equal_intro: "a : A \<Longrightarrow> (refl a): a =\<^sub>A a" and Equal_elim: "\<lbrakk> x: A; y: A; p: x =\<^sub>A y; - \<And>x. x: A \<Longrightarrow> f(x) : C(x)(x)(refl x); - \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<longrightarrow> U(i) - \<rbrakk> \<Longrightarrow> ind\<^sub>=(f)(p) : C(x)(y)(p)" + \<And>x. x: A \<Longrightarrow> f x: C x x (refl x); + \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i + \<rbrakk> \<Longrightarrow> ind\<^sub>= f p : C x y p" and Equal_comp: "\<lbrakk> a: A; - \<And>x. x: A \<Longrightarrow> f(x) : C(x)(x)(refl x); - \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<longrightarrow> U(i) - \<rbrakk> \<Longrightarrow> ind\<^sub>=(f)(refl(a)) \<equiv> f(a)" + \<And>x. x: A \<Longrightarrow> f x: C x x (refl x); + \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i + \<rbrakk> \<Longrightarrow> ind\<^sub>= f (refl a) \<equiv> f a" text "Admissible inference rules for equality type formation:" axiomatization where - Equal_wellform1: "a =\<^sub>A b: U(i) \<Longrightarrow> A: U(i)" + Equal_wellform1: "a =\<^sub>A b: U i \<Longrightarrow> A: U i" and - Equal_wellform2: "a =\<^sub>A b: U(i) \<Longrightarrow> a: A" + Equal_wellform2: "a =\<^sub>A b: U i \<Longrightarrow> a: A" and - Equal_wellform3: "a =\<^sub>A b: U(i) \<Longrightarrow> b: A" + Equal_wellform3: "a =\<^sub>A b: U i \<Longrightarrow> b: A" text "Rule attribute declarations:" diff --git a/EqualProps.thy b/EqualProps.thy index c114d37..708eb33 100644 --- a/EqualProps.thy +++ b/EqualProps.thy @@ -14,7 +14,7 @@ begin section \<open>Symmetry / Path inverse\<close> -definition inv :: "Term \<Rightarrow> Term" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. refl(x)) p" +definition inv :: "Term \<Rightarrow> Term" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. (refl x)) p" text " In the proof below we begin by using path induction on \<open>p\<close> with the application of \<open>rule Equal_elim\<close>, telling Isabelle the specific substitutions to use. @@ -22,7 +22,7 @@ text " " lemma inv_type: - assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "p\<inverse>: y =\<^sub>A x" + assumes "A : U i" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "p\<inverse>: y =\<^sub>A x" unfolding inv_def by (rule Equal_elim[where ?x=x and ?y=y]) (routine lems: assms) \<comment> \<open>The type doesn't depend on \<open>p\<close> so we don't need to specify \<open>?p\<close> in the \<open>where\<close> clause above.\<close> @@ -33,7 +33,7 @@ text " " lemma inv_comp: - assumes "A : U(i)" and "a : A" shows "(refl a)\<inverse> \<equiv> refl(a)" + assumes "A : U i " and "a : A" shows "(refl a)\<inverse> \<equiv> refl a" unfolding inv_def proof compute show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" .. @@ -46,14 +46,14 @@ text " Raw composition function, of type \<open>\<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)\<close> polymorphic over the type \<open>A\<close>. " -definition rpathcomp :: Term where "rpathcomp \<equiv> \<^bold>\<lambda>_ _ p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>_ q. ind\<^sub>= (\<lambda>x. refl(x)) q) p" +definition rpathcomp :: Term where "rpathcomp \<equiv> \<^bold>\<lambda>_ _ p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>_ q. ind\<^sub>= (\<lambda>x. (refl x)) q) p" text " More complicated proofs---the nested path inductions require more explicit step-by-step rule applications: " lemma rpathcomp_type: - assumes "A: U(i)" + assumes "A: U i" shows "rpathcomp: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)" unfolding rpathcomp_def proof @@ -81,7 +81,7 @@ proof qed fact corollary - assumes "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" + assumes "A: U i" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" shows "rpathcomp`x`y`p`z`q: x =\<^sub>A z" by (routine lems: assms rpathcomp_type) @@ -90,11 +90,11 @@ text " " lemma rpathcomp_comp: - assumes "A: U(i)" and "a: A" - shows "rpathcomp`a`a`refl(a)`a`refl(a) \<equiv> refl(a)" + assumes "A: U i" and "a: A" + shows "rpathcomp`a`a`(refl a)`a`(refl a) \<equiv> refl a" unfolding rpathcomp_def proof compute - { fix x assume 1: "x: A" + fix x assume 1: "x: A" show "\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)" proof fix y assume 2: "y: A" @@ -114,11 +114,11 @@ proof compute qed (rule assms) qed (routine lems: assms 1 2 3) qed (routine lems: assms 1 2) - qed (rule assms) } + qed (rule assms) - show "(\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p)`a`refl(a)`a`refl(a) \<equiv> refl(a)" + next show "(\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p)`a`(refl a)`a`(refl a) \<equiv> refl a" proof compute - { fix y assume 1: "y: A" + fix y assume 1: "y: A" show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: a =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z)" proof fix p assume 2: "p: a =\<^sub>A y" @@ -135,11 +135,11 @@ proof compute qed (routine lems: assms 3 4) qed fact qed (routine lems: assms 1 2) - qed (routine lems: assms 1) } + qed (routine lems: assms 1) - show "(\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p)`refl(a)`a`refl(a) \<equiv> refl(a)" + next show "(\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p)`(refl a)`a`(refl a) \<equiv> refl a" proof compute - { fix p assume 1: "p: a =\<^sub>A a" + fix p assume 1: "p: a =\<^sub>A a" show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. a =\<^sub>A z \<rightarrow> a =\<^sub>A z" proof (rule Equal_elim[where ?x=a and ?y=a]) fix u assume 2: "u: A" @@ -152,11 +152,11 @@ proof compute by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms 2 3) qed (routine lems: assms 2 3) qed fact - qed (routine lems: assms 1) } + qed (routine lems: assms 1) - show "(ind\<^sub>=(\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q)(refl(a)))`a`refl(a) \<equiv> refl(a)" + next show "(ind\<^sub>=(\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q)(refl a))`a`(refl a) \<equiv> refl a" proof compute - { fix u assume 1: "u: A" + fix u assume 1: "u: A" show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z" proof fix z assume 2: "z: A" @@ -165,22 +165,22 @@ proof compute show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z" by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms 1 2) qed (routine lems: assms 1 2) - qed fact } + qed fact - show "(\<^bold>\<lambda>z q. ind\<^sub>= refl q)`a`refl(a) \<equiv> refl(a)" + next show "(\<^bold>\<lambda>z q. ind\<^sub>= refl q)`a`(refl a) \<equiv> refl a" proof compute - { fix a assume 1: "a: A" + fix a assume 1: "a: A" show "\<^bold>\<lambda>q. ind\<^sub>= refl q: a =\<^sub>A a \<rightarrow> a =\<^sub>A a" proof show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= refl q: a =\<^sub>A a" by (rule Equal_elim[where ?x=a and ?y=a]) (routine lems: assms 1) - qed (routine lems: assms 1) } + qed (routine lems: assms 1) - show "(\<^bold>\<lambda>q. ind\<^sub>= refl q)`refl(a) \<equiv> refl(a)" + next show "(\<^bold>\<lambda>q. ind\<^sub>= refl q)`(refl a) \<equiv> refl a" proof compute show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= refl p: a =\<^sub>A a" by (rule Equal_elim[where ?x=a and ?y=a]) (routine lems: assms) - show "ind\<^sub>= refl (refl(a)) \<equiv> refl(a)" + show "ind\<^sub>= refl (refl a) \<equiv> refl a" proof compute show "\<And>x. x: A \<Longrightarrow> refl(x): x =\<^sub>A x" .. qed (routine lems: assms) @@ -196,23 +196,23 @@ text "The raw object lambda term is cumbersome to use, so we define a simpler co axiomatization pathcomp :: "[Term, Term] \<Rightarrow> Term" (infixl "\<bullet>" 120) where pathcomp_def: "\<lbrakk> - A: U(i); + A: U i; x: A; y: A; z: A; p: x =\<^sub>A y; q: y =\<^sub>A z \<rbrakk> \<Longrightarrow> p \<bullet> q \<equiv> rpathcomp`x`y`p`z`q" lemma pathcomp_type: - assumes "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" + assumes "A: U i" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" shows "p \<bullet> q: x =\<^sub>A z" proof (subst pathcomp_def) - show "A: U(i)" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" by fact+ + show "A: U i" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" by fact+ qed (routine lems: assms rpathcomp_type) lemma pathcomp_comp: - assumes "A : U(i)" and "a : A" shows "refl(a) \<bullet> refl(a) \<equiv> refl(a)" + assumes "A : U i" and "a : A" shows "(refl a) \<bullet> (refl a) \<equiv> refl a" by (subst pathcomp_def) (routine lems: assms rpathcomp_comp) @@ -223,44 +223,45 @@ lemmas EqualProps_comp [comp] = inv_comp pathcomp_comp section \<open>Higher groupoid structure of types\<close> lemma - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" + assumes "A: U i" "x: A" "y: A" "p: x =\<^sub>A y" shows - "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =\<^sub>A y] p \<bullet> refl(y)" and - "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =\<^sub>A y] refl(x) \<bullet> p" + "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =\<^sub>A y] p \<bullet> (refl y)" and + "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =\<^sub>A y] (refl x) \<bullet> p" proof - - show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =[A] y] p \<bullet> refl(y)" + show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =[A] y] p \<bullet> (refl y)" by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+ - show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =[A] y] refl x \<bullet> p" + show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =[A] y] (refl x) \<bullet> p" by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+ qed lemma - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" + assumes "A: U i" "x: A" "y: A" "p: x =\<^sub>A y" shows - "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse> \<bullet> p =[y =\<^sub>A y] refl(y)" and - "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p \<bullet> p\<inverse> =[x =\<^sub>A x] refl(x)" + "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse> \<bullet> p =[y =\<^sub>A y] (refl y)" and + "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p \<bullet> p\<inverse> =[x =\<^sub>A x] (refl x)" proof - - show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse> \<bullet> p =[y =\<^sub>A y] refl(y)" + show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse> \<bullet> p =[y =\<^sub>A y] (refl y)" by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+ - show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p \<bullet> p\<inverse> =[x =\<^sub>A x] refl(x)" + show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p \<bullet> p\<inverse> =[x =\<^sub>A x] (refl x)" by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+ qed lemma - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" + assumes "A: U i" "x: A" "y: A" "p: x =\<^sub>A y" shows "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse>\<inverse> =[x =\<^sub>A y] p" by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms) +text "Next we construct a proof term of associativity of path composition." schematic_goal assumes - "A: U(i)" + "A: U i" "x: A" "y: A" "z: A" "w: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" "r: z =\<^sub>A w" shows @@ -268,8 +269,8 @@ schematic_goal apply (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) apply (rule assms)+ -apply (subst pathcomp_comp) - +\<comment> \<open>Continue by substituting \<open>refl x \<bullet> q = q\<close> etc.\<close> +sorry end diff --git a/HoTT_Base.thy b/HoTT_Base.thy index 4e1a9be..a5b88fd 100644 --- a/HoTT_Base.thy +++ b/HoTT_Base.thy @@ -16,8 +16,6 @@ text "Meta syntactic type for object-logic types and terms." typedecl Term -section \<open>Judgments\<close> - text " Formalize the typing judgment \<open>a: A\<close>. For judgmental/definitional equality we use the existing Pure equality \<open>\<equiv>\<close> and hence do not need to define a separate judgment for it. @@ -38,13 +36,13 @@ axiomatization lt :: "[Ord, Ord] \<Rightarrow> prop" (infix "<" 999) and leq :: "[Ord, Ord] \<Rightarrow> prop" (infix "\<le>" 999) where - Ord_lt_min: "\<And>n. O < S(n)" + Ord_lt_min: "\<And>n. O < S n" and - Ord_lt_monotone: "\<And>m n. m < n \<Longrightarrow> S(m) < S(n)" + Ord_lt_monotone: "\<And>m n. m < n \<Longrightarrow> S m < S n" and Ord_leq_min: "\<And>n. O \<le> n" and - Ord_leq_monotone: "\<And>m n. m \<le> n \<Longrightarrow> S(m) \<le> S(n)" + Ord_leq_monotone: "\<And>m n. m \<le> n \<Longrightarrow> S m \<le> S n" lemmas Ord_rules [intro] = Ord_lt_min Ord_lt_monotone Ord_leq_min Ord_leq_monotone \<comment> \<open>Enables \<open>standard\<close> to automatically solve inequalities.\<close> @@ -54,9 +52,9 @@ text "Define the universe types." axiomatization U :: "Ord \<Rightarrow> Term" where - U_hierarchy: "\<And>i j. i < j \<Longrightarrow> U(i): U(j)" + U_hierarchy: "\<And>i j. i < j \<Longrightarrow> U i: U j" and - U_cumulative: "\<And>A i j. \<lbrakk>A: U(i); i \<le> j\<rbrakk> \<Longrightarrow> A: U(j)" + U_cumulative: "\<And>A i j. \<lbrakk>A: U i; i \<le> j\<rbrakk> \<Longrightarrow> A: U j" text " The rule \<open>U_cumulative\<close> is very unsafe: if used as-is it will usually lead to an infinite rewrite loop! @@ -71,7 +69,7 @@ text " " abbreviation (input) constrained :: "[Term \<Rightarrow> Term, Term, Term] \<Rightarrow> prop" ("(1_: _ \<longrightarrow> _)") - where "f: A \<longrightarrow> B \<equiv> (\<And>x. x : A \<Longrightarrow> f(x): B)" + where "f: A \<longrightarrow> B \<equiv> (\<And>x. x : A \<Longrightarrow> f x: B)" text " The above is used to define type families, which are constrained meta-lambdas \<open>P: A \<longrightarrow> B\<close> where \<open>A\<close> and \<open>B\<close> are small types. @@ -17,31 +17,31 @@ axiomatization succ :: "Term \<Rightarrow> Term" and indNat :: "[[Term, Term] \<Rightarrow> Term, Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<nat>)") where - Nat_form: "\<nat>: U(O)" + Nat_form: "\<nat>: U O" and Nat_intro_0: "0: \<nat>" and - Nat_intro_succ: "n: \<nat> \<Longrightarrow> succ(n): \<nat>" + Nat_intro_succ: "n: \<nat> \<Longrightarrow> succ n: \<nat>" and Nat_elim: "\<lbrakk> - C: \<nat> \<longrightarrow> U(i); - \<And>n c. \<lbrakk>n: \<nat>; c: C(n)\<rbrakk> \<Longrightarrow> f(n)(c): C(succ n); - a: C(0); + C: \<nat> \<longrightarrow> U i; + \<And>n c. \<lbrakk>n: \<nat>; c: C n\<rbrakk> \<Longrightarrow> f n c: C (succ n); + a: C 0; n: \<nat> - \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat>(f)(a)(n): C(n)" + \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> f a n: C n" and Nat_comp_0: "\<lbrakk> - C: \<nat> \<longrightarrow> U(i); - \<And>n c. \<lbrakk>n: \<nat>; c: C(n)\<rbrakk> \<Longrightarrow> f(n)(c): C(succ n); - a: C(0) - \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat>(f)(a)(0) \<equiv> a" + C: \<nat> \<longrightarrow> U i; + \<And>n c. \<lbrakk>n: \<nat>; c: C(n)\<rbrakk> \<Longrightarrow> f n c: C (succ n); + a: C 0 + \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> f a 0 \<equiv> a" and Nat_comp_succ: "\<lbrakk> - C: \<nat> \<longrightarrow> U(i); - \<And>n c. \<lbrakk>n: \<nat>; c: C(n)\<rbrakk> \<Longrightarrow> f(n)(c): C(succ n); - a: C(0); + C: \<nat> \<longrightarrow> U i; + \<And>n c. \<lbrakk>n: \<nat>; c: C n\<rbrakk> \<Longrightarrow> f n c: C (succ n); + a: C 0; n: \<nat> - \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat>(f)(a)(succ n) \<equiv> f(n)(ind\<^sub>\<nat> f a n)" + \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> f a (succ n) \<equiv> f n (ind\<^sub>\<nat> f a n)" text "Rule attribute declarations:" @@ -36,17 +36,17 @@ abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarro section \<open>Type rules\<close> axiomatization where - Prod_form: "\<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x): U(i)" + Prod_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x: U i" and - Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x): B(x); A: U(i)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x): \<Prod>x:A. B(x)" + Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x: \<Prod>x:A. B x" and - Prod_elim: "\<lbrakk>f: \<Prod>x:A. B(x); a: A\<rbrakk> \<Longrightarrow> f`a: B(a)" + Prod_elim: "\<lbrakk>f: \<Prod>x:A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a" and - Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x): B(x); a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x))`a \<equiv> b(a)" + Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b x)`a \<equiv> b a" and - Prod_uniq: "f : \<Prod>x:A. B(x) \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f" + Prod_uniq: "f : \<Prod>x:A. B x \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f" and - Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x) \<equiv> b'(x); A: U(i)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) \<equiv> \<^bold>\<lambda>x. b'(x)" + Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x \<equiv> \<^bold>\<lambda>x. c x" text " The Pure rules for \<open>\<equiv>\<close> only let us judge strict syntactic equality of object lambda expressions; Prod_eq is the actual definitional equality rule. @@ -55,15 +55,15 @@ text " " text " - In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U(i)\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U(i)\<close> and \<open>B: A \<longrightarrow> U(i)\<close>. + In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U i\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U i\<close> and \<open>B: A \<longrightarrow> U i\<close>. That is to say, the following inference rules are admissible, and it simplifies proofs greatly to axiomatize them directly. " axiomatization where - Prod_wellform1: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" + Prod_wellform1: "(\<Prod>x:A. B x: U i) \<Longrightarrow> A: U i" and - Prod_wellform2: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" + Prod_wellform2: "(\<Prod>x:A. B x: U i) \<Longrightarrow> B: A \<longrightarrow> U i" text "Rule attribute declarations---set up various methods to use the type rules." @@ -75,9 +75,9 @@ lemmas Prod_routine [intro] = Prod_form Prod_intro Prod_elim section \<open>Function composition\<close> -definition compose :: "[Term, Term] \<Rightarrow> Term" (infixr "o" 70) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)" +definition compose :: "[Term, Term] \<Rightarrow> Term" (infixr "o" 110) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)" -syntax "_COMPOSE" :: "[Term, Term] \<Rightarrow> Term" (infixr "\<circ>" 70) +syntax "_COMPOSE" :: "[Term, Term] \<Rightarrow> Term" (infixr "\<circ>" 110) translations "g \<circ> f" \<rightleftharpoons> "g o f" diff --git a/ProdProps.thy b/ProdProps.thy index 1af6ad3..14556af 100644 --- a/ProdProps.thy +++ b/ProdProps.thy @@ -18,7 +18,7 @@ text " " lemma compose_assoc: - assumes "A: U(i)" and "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D(x)" + assumes "A: U i" and "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D x" shows "(h \<circ> g) \<circ> f \<equiv> h \<circ> (g \<circ> f)" proof (subst (0 1 2 3) compose_def) show "\<^bold>\<lambda>x. (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> \<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x)" @@ -31,19 +31,19 @@ proof (subst (0 1 2 3) compose_def) proof compute show "\<And>x. x: A \<Longrightarrow> g`(f`x): C" by (routine lems: assms) qed - show "\<And>x. x: B \<Longrightarrow> h`(g`x): D(g`x)" by (routine lems: assms) + show "\<And>x. x: B \<Longrightarrow> h`(g`x): D (g`x)" by (routine lems: assms) qed (routine lems: assms) qed fact qed lemma compose_comp: - assumes "A: U(i)" and "\<And>x. x: A \<Longrightarrow> b(x): B" and "\<And>x. x: B \<Longrightarrow> c(x): C(x)" - shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))" + assumes "A: U i" and "\<And>x. x: A \<Longrightarrow> b x: B" and "\<And>x. x: B \<Longrightarrow> c x: C x" + shows "(\<^bold>\<lambda>x. c x) \<circ> (\<^bold>\<lambda>x. b x) \<equiv> \<^bold>\<lambda>x. c (b x)" proof (subst compose_def, subst Prod_eq) - show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a" + show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c x)`((\<^bold>\<lambda>x. b x)`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a" proof compute - show "\<And>a. a: A \<Longrightarrow> c((\<^bold>\<lambda>x. b(x))`a) \<equiv> (\<^bold>\<lambda>x. c(b(x)))`a" + show "\<And>a. a: A \<Longrightarrow> c ((\<^bold>\<lambda>x. b x)`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a" by (derive lems: assms) qed (routine lems: assms) qed (derive lems: assms) @@ -12,44 +12,44 @@ theory Proj begin -definition fst :: "Term \<Rightarrow> Term" where "fst(p) \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. x) p" -definition snd :: "Term \<Rightarrow> Term" where "snd(p) \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. y) p" +definition fst :: "Term \<Rightarrow> Term" where "fst p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. x) p" +definition snd :: "Term \<Rightarrow> Term" where "snd p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. y) p" text "Typing judgments and computation rules for the dependent and non-dependent projection functions." lemma fst_type: - assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "fst(p): A" + assumes "\<Sum>x:A. B x: U i" and "p: \<Sum>x:A. B x" shows "fst p: A" unfolding fst_def by (derive lems: assms) lemma fst_comp: - assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "fst(<a,b>) \<equiv> a" + assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "fst <a,b> \<equiv> a" unfolding fst_def proof compute - show "a: A" and "b: B(a)" by fact+ + show "a: A" and "b: B a" by fact+ qed (routine lems: assms)+ lemma snd_type: - assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "snd(p): B(fst p)" + assumes "\<Sum>x:A. B x: U i" and "p: \<Sum>x:A. B x" shows "snd p: B (fst p)" unfolding snd_def proof - show "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> B(fst p): U(i)" by (derive lems: assms fst_type) + show "\<And>p. p: \<Sum>x:A. B x \<Longrightarrow> B (fst p): U i" by (derive lems: assms fst_type) fix x y - assume asm: "x: A" "y: B(x)" - show "y: B(fst <x,y>)" + assume asm: "x: A" "y: B x" + show "y: B (fst <x,y>)" proof (subst fst_comp) - show "A: U(i)" by (wellformed lems: assms(1)) - show "\<And>x. x: A \<Longrightarrow> B(x): U(i)" by (wellformed lems: assms(1)) + show "A: U i" by (wellformed lems: assms(1)) + show "\<And>x. x: A \<Longrightarrow> B x: U i" by (wellformed lems: assms(1)) qed fact+ qed fact lemma snd_comp: - assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "snd(<a,b>) \<equiv> b" + assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "snd <a,b> \<equiv> b" unfolding snd_def proof compute - show "\<And>x y. y: B(x) \<Longrightarrow> y: B(x)" . + show "\<And>x y. y: B x \<Longrightarrow> y: B x" . show "a: A" by fact - show "b: B(a)" by fact + show "b: B a" by fact qed (routine lems: assms) @@ -33,30 +33,30 @@ abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) section \<open>Type rules\<close> axiomatization where - Sum_form: "\<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x): U(i)" + Sum_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x: U i" and - Sum_intro: "\<lbrakk>B: A \<longrightarrow> U(i); a: A; b: B(a)\<rbrakk> \<Longrightarrow> <a,b>: \<Sum>x:A. B(x)" + Sum_intro: "\<lbrakk>B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a,b>: \<Sum>x:A. B x" and Sum_elim: "\<lbrakk> - p: \<Sum>x:A. B(x); - \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f(x)(y): C(<x,y>); - C: \<Sum>x:A. B(x) \<longrightarrow> U(i) - \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>(f)(p): C(p)" (* What does writing \<lambda>x y. f(x, y) change? *) + p: \<Sum>x:A. B x; + \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x,y>; + C: \<Sum>x:A. B x \<longrightarrow> U i + \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> f p: C p" (* What does writing \<lambda>x y. f(x, y) change? *) and Sum_comp: "\<lbrakk> a: A; - b: B(a); - \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f(x)(y): C(<x,y>); + b: B a; + \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f x y: C <x,y>; B: A \<longrightarrow> U(i); - C: \<Sum>x:A. B(x) \<longrightarrow> U(i) - \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>(f)(<a,b>) \<equiv> f(a)(b)" + C: \<Sum>x:A. B x \<longrightarrow> U i + \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> f <a,b> \<equiv> f a b" text "Admissible inference rules for sum formation:" axiomatization where - Sum_wellform1: "(\<Sum>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" + Sum_wellform1: "(\<Sum>x:A. B x: U i) \<Longrightarrow> A: U i" and - Sum_wellform2: "(\<Sum>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" + Sum_wellform2: "(\<Sum>x:A. B x: U i) \<Longrightarrow> B: A \<longrightarrow> U i" text "Rule attribute declarations:" @@ -20,9 +20,9 @@ where and Unit_intro: "\<star>: \<one>" and - Unit_elim: "\<lbrakk>C: \<one> \<longrightarrow> U(i); c: C(\<star>); a: \<one>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one>(c)(a) : C(a)" + Unit_elim: "\<lbrakk>C: \<one> \<longrightarrow> U i; c: C \<star>; a: \<one>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> c a: C a" and - Unit_comp: "\<lbrakk>C: \<one> \<longrightarrow> U(i); c: C(\<star>)\<rbrakk> \<Longrightarrow> ind\<^sub>\<one>(c)(\<star>) \<equiv> c" + Unit_comp: "\<lbrakk>C: \<one> \<longrightarrow> U i; c: C \<star>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> c \<star> \<equiv> c" text "Rule attribute declarations:" |