aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--HoTT_Methods.thy4
-rw-r--r--Proj.thy13
2 files changed, 7 insertions, 10 deletions
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index 9849195..411176e 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -50,10 +50,10 @@ method derive uses lems = (routine add: lems | compute comp: lems)+
section \<open>Induction\<close>
-text "
+text \<open>
Placeholder section for the automation of induction, i.e. using the elimination rules.
At the moment one must directly apply them with \<open>rule X_elim\<close>.
-"
+\<close>
end
diff --git a/Proj.thy b/Proj.thy
index f272224..e76e8d3 100644
--- a/Proj.thy
+++ b/Proj.thy
@@ -7,10 +7,7 @@ Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent
*)
theory Proj
-imports
- HoTT_Methods
- Prod
- Sum
+imports HoTT_Methods Prod Sum
begin
@@ -28,12 +25,12 @@ unfolding fst_def by compute (derive lems: assms)
lemma snd_type:
assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x" shows "snd p: B (fst p)"
-unfolding snd_def proof
- show "\<And>p. p: \<Sum>x:A. B x \<Longrightarrow> B (fst p): U i" by (derive lems: assms fst_type)
-
+unfolding snd_def proof (derive lems: assms)
+ show "\<And>p. p: \<Sum>x:A. B x \<Longrightarrow> fst p: A" using assms(1-2) by (rule fst_type)
+
fix x y assume asm: "x: A" "y: B x"
show "y: B (fst <x,y>)" by (derive lems: asm assms fst_comp)
-qed fact
+qed
lemma snd_comp:
assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "snd <a,b> \<equiv> b"