diff options
Diffstat (limited to '')
-rw-r--r-- | Coprod.thy | 10 | ||||
-rw-r--r-- | Equal.thy | 20 | ||||
-rw-r--r-- | EqualProps.thy | 29 | ||||
-rw-r--r-- | HoTT_Base.thy | 1 | ||||
-rw-r--r-- | HoTT_Methods.thy | 4 | ||||
-rw-r--r-- | Prod.thy | 22 | ||||
-rw-r--r-- | Proj.thy | 45 | ||||
-rw-r--r-- | Sum.thy | 27 | ||||
-rw-r--r-- | scratch.thy | 6 |
9 files changed, 108 insertions, 56 deletions
@@ -44,17 +44,17 @@ and \<And>y. y: B \<Longrightarrow> d(y): C(inr(y)); b: B \<rbrakk> \<Longrightarrow> ind\<^sub>+(c)(d)(inr(b)) \<equiv> d(b)" - +(* text "Admissible formation inference rules:" axiomatization where Coprod_form_cond1: "\<And>i A B. A + B: U(i) \<Longrightarrow> A: U(i)" and Coprod_form_cond2: "\<And>i A B. A + B: U(i) \<Longrightarrow> B: U(i)" - -lemmas Coprod_rules [intro] = Coprod_form Coprod_intro1 Coprod_intro2 - Coprod_elim Coprod_comp1 Coprod_comp2 -lemmas Coprod_form_conds [intro] = Coprod_form_cond1 Coprod_form_cond2 +*) +lemmas Coprod_rules [intro] = + Coprod_form Coprod_intro1 Coprod_intro2 Coprod_elim Coprod_comp1 Coprod_comp2 +(*lemmas Coprod_form_conds [intro] = Coprod_form_cond1 Coprod_form_cond2 *) lemmas Coprod_comps [comp] = Coprod_comp1 Coprod_comp2 @@ -28,11 +28,11 @@ translations section \<open>Type rules\<close> axiomatization where - Equal_form: "\<And>i A a b. \<lbrakk>A: U(i); a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U(i)" + Equal_form: "\<lbrakk>A: U(i); a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U(i)" and - Equal_intro: "\<And>A a. a : A \<Longrightarrow> refl(a): a =\<^sub>A a" + Equal_intro: "a : A \<Longrightarrow> refl(a): a =\<^sub>A a" and - Equal_elim: "\<And>i A C f a b p. \<lbrakk> + Equal_elim: "\<lbrakk> \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<longrightarrow> U(i); \<And>x. x: A \<Longrightarrow> f(x) : C(x)(x)(refl x); a: A; @@ -40,23 +40,23 @@ and p: a =\<^sub>A b \<rbrakk> \<Longrightarrow> ind\<^sub>=(f)(a)(b)(p) : C(a)(b)(p)" and - Equal_comp: "\<And>i A C f a. \<lbrakk> + Equal_comp: "\<lbrakk> \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<longrightarrow> U(i); \<And>x. x: A \<Longrightarrow> f(x) : C(x)(x)(refl x); a: A \<rbrakk> \<Longrightarrow> ind\<^sub>=(f)(a)(a)(refl(a)) \<equiv> f(a)" text "Admissible inference rules for equality type formation:" - +(* axiomatization where - Equal_form_cond1: "\<And>i A a b. a =\<^sub>A b: U(i) \<Longrightarrow> A: U(i)" + Equal_form_cond1: "a =\<^sub>A b: U(i) \<Longrightarrow> A: U(i)" and - Equal_form_cond2: "\<And>i A a b. a =\<^sub>A b: U(i) \<Longrightarrow> a: A" + Equal_form_cond2: "a =\<^sub>A b: U(i) \<Longrightarrow> a: A" and - Equal_form_cond3: "\<And>i A a b. a =\<^sub>A b: U(i) \<Longrightarrow> b: A" - + Equal_form_cond3: "a =\<^sub>A b: U(i) \<Longrightarrow> b: A" +*) lemmas Equal_rules [intro] = Equal_form Equal_intro Equal_elim Equal_comp -lemmas Equal_form_conds [intro] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3 +(*lemmas Equal_form_conds [intro] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3*) lemmas Equal_comps [comp] = Equal_comp diff --git a/EqualProps.thy b/EqualProps.thy index 17c7fa6..9d23a99 100644 --- a/EqualProps.thy +++ b/EqualProps.thy @@ -15,20 +15,25 @@ begin section \<open>Symmetry / Path inverse\<close> -definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])") - where "inv[A,x,y] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) x y p" +definition inv :: "[Term, Term] \<Rightarrow> (Term \<Rightarrow> Term)" ("(1inv[_,/ _])") + where "inv[x,y] \<equiv> \<lambda>p. ind\<^sub>= (\<lambda>x. refl(x)) x y p" lemma inv_type: - assumes "A : U(i)" and "x : A" and "y : A" shows "inv[A,x,y] : x =\<^sub>A y \<rightarrow> y =\<^sub>A x" - unfolding inv_def - by (derive lems: assms) + assumes "A : U(i)" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "inv[x,y](p): y =\<^sub>A x" +unfolding inv_def +proof + show "\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> y =\<^sub>A x: U(i)" using assms(1) .. + show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" .. +qed (fact assms)+ -corollary assumes "x =\<^sub>A y : U(i)" and "p : x =\<^sub>A y" shows "inv[A,x,y]`p : y =\<^sub>A x" - by (derive lems: inv_type assms) -lemma inv_comp: assumes "A : U(i)" and "a : A" shows "inv[A,a,a]`refl(a) \<equiv> refl(a)" - unfolding inv_def by (simplify lems: assms) +lemma inv_comp: assumes "A : U(i)" and "a : A" shows "inv[a,a](refl(a)) \<equiv> refl(a)" +unfolding inv_def +proof + show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" .. + show "\<And>x. x: A \<Longrightarrow> x =\<^sub>A x: U(i)" using assms(1) .. +qed (fact assms) section \<open>Transitivity / Path composition\<close> @@ -42,10 +47,8 @@ definition rcompose :: "Term \<Rightarrow> Term" ("(1rcompose[_])") x y p" -text "``Natural'' composition function, of type \<open>\<Prod>x,y,z:A. x =\<^sub>A y \<rightarrow> y =\<^sub>A z \<rightarrow> x =\<^sub>A z\<close>." - -abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])") - where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:(x =\<^sub>A y). \<^bold>\<lambda>q:(y =\<^sub>A z). rcompose[A]`x`y`p`z`q" +definition compose :: "[Term, Term, Term] \<Rightarrow> [Term, Term] \<Rightarrow> Term" ("(1compose[ _,/ _,/ _])") + where "compose[x,y,z] \<equiv> \<lambda>p." lemma compose_type: diff --git a/HoTT_Base.thy b/HoTT_Base.thy index 614419e..e94ca5c 100644 --- a/HoTT_Base.thy +++ b/HoTT_Base.thy @@ -56,6 +56,7 @@ and U_cumulative: "\<And>A i j. \<lbrakk>A: U(i); i <- j\<rbrakk> \<Longrightarrow> A: U(j)" \<comment> \<open>WARNING: \<open>rule Universe_cumulative\<close> can result in an infinite rewrite loop!\<close> + section \<open>Type families\<close> text " diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy index 8351c3c..f80b99b 100644 --- a/HoTT_Methods.thy +++ b/HoTT_Methods.thy @@ -57,9 +57,9 @@ method derive uses lems unfolds = ( unfold unfolds | simple lems: lems | match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed jdgmt: lem\<close> | - rule U_hierarchy | + rule U_hierarchy (*| (rule U_cumulative, simple lems: lems) | - (rule U_cumulative, match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed jdgmt: lem\<close>) + (rule U_cumulative, match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed jdgmt: lem\<close>)*) )+ @@ -41,20 +41,21 @@ abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarro section \<open>Type rules\<close> axiomatization where - Prod_form: "\<And>i A B. \<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x): U(i)" + Prod_form: "\<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x): U(i)" and - Prod_intro: "\<And>i A B b. \<lbrakk>A: U(i); B: A \<longrightarrow> U(i); \<And>x. x: A \<Longrightarrow> b(x): B(x)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x:A. b(x): \<Prod>x:A. B(x)" + Prod_intro: "\<lbrakk>A: U(i); \<And>x. x: A \<Longrightarrow> b(x): B(x)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x:A. b(x): \<Prod>x:A. B(x)" and - Prod_elim: "\<And>A B f a. \<lbrakk>f: \<Prod>x:A. B(x); a: A\<rbrakk> \<Longrightarrow> f`a: B(a)" + Prod_elim: "\<lbrakk>f: \<Prod>x:A. B(x); a: A\<rbrakk> \<Longrightarrow> f`a: B(a)" and - Prod_comp: "\<And>i A B b a. \<lbrakk>A: U(i); B: A \<longrightarrow> U(i); \<And>x. x: A \<Longrightarrow> b(x): B(x); a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" + Prod_comp: "\<lbrakk>a: A; \<And>x. x: A \<Longrightarrow> b(x): B(x)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and - Prod_uniq: "\<And>A B f. f : \<Prod>x:A. B(x) \<Longrightarrow> \<^bold>\<lambda>x:A. (f`x) \<equiv> f" + Prod_uniq: "f : \<Prod>x:A. B(x) \<Longrightarrow> \<^bold>\<lambda>x:A. (f`x) \<equiv> f" text " Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation). " +(* text " In addition to the usual type rules, it is a meta-theorem (*PROVE THIS!*) that whenever \<open>\<Prod>x:A. B x: U(i)\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U(i)\<close> and \<open>B: A \<longrightarrow> U(i)\<close>. @@ -62,14 +63,15 @@ text " " axiomatization where - Prod_form_cond1: "\<And>i A B. (\<Prod>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" + Prod_form_cond1: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" and - Prod_form_cond2: "\<And>i A B. (\<Prod>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" + Prod_form_cond2: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" +*) text "Set up the standard reasoner to use the type rules:" lemmas Prod_rules = Prod_form Prod_intro Prod_elim Prod_comp Prod_uniq -lemmas Prod_form_conds [intro (*elim, wellform*)] = Prod_form_cond1 Prod_form_cond2 +(*lemmas Prod_form_conds [intro (*elim, wellform*)] = Prod_form_cond1 Prod_form_cond2*) lemmas Prod_comps [comp] = Prod_comp Prod_uniq @@ -84,9 +86,9 @@ where and Unit_intro: "\<star>: \<one>" and - Unit_elim: "\<And>i C c a. \<lbrakk>C: \<one> \<longrightarrow> U(i); c: C(\<star>); a: \<one>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one>(c)(a) : C(a)" + Unit_elim: "\<lbrakk>C: \<one> \<longrightarrow> U(i); c: C(\<star>); a: \<one>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one>(c)(a) : C(a)" and - Unit_comp: "\<And>i C c. \<lbrakk>C: \<one> \<longrightarrow> U(i); c: C(\<star>)\<rbrakk> \<Longrightarrow> ind\<^sub>\<one>(c)(\<star>) \<equiv> c" + Unit_comp: "\<lbrakk>C: \<one> \<longrightarrow> U(i); c: C(\<star>)\<rbrakk> \<Longrightarrow> ind\<^sub>\<one>(c)(\<star>) \<equiv> c" lemmas Unit_rules [intro] = Unit_form Unit_intro Unit_elim Unit_comp lemmas Unit_comps [comp] = Unit_comp @@ -18,8 +18,49 @@ abbreviation snd :: "Term \<Rightarrow> Term" where "snd \<equiv> \<lambda>p. in text "Typing judgments and computation rules for the dependent and non-dependent projection functions." -lemma assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "fst(p): A" - by (derive lems: assms + +lemma fst_type: + assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "fst(p): A" +proof + show "A: U(i)" using assms(1) by (rule Sum_forms) +qed (fact assms | assumption)+ + + +lemma fst_comp: + assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "fst(<a,b>) \<equiv> a" +proof + show "\<And>x. x: A \<Longrightarrow> x: A" . +qed (rule assms)+ + + +lemma snd_type: + assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "snd(p): B(fst p)" +proof + show "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> B(fst p): U(i)" + proof - + have "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> fst(p): A" using assms(1) by (rule fst_type) + with assms(1) show "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> B(fst p): U(i)" by (rule Sum_forms) + qed + + fix x y + assume asm: "x: A" "y: B(x)" + show "y: B(fst <x,y>)" + proof (subst fst_comp) + show "A: U(i)" using assms(1) by (rule Sum_forms) + show "\<And>x. x: A \<Longrightarrow> B(x): U(i)" using assms(1) by (rule Sum_forms) + qed (rule asm)+ +qed (fact assms) + + +lemma snd_comp: + assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "snd(<a,b>) \<equiv> b" +proof + show "\<And>x y. y: B(x) \<Longrightarrow> y: B(x)" . + show "a: A" by (fact assms) + show "b: B(a)" by (fact assms) + show *: "B(a): U(i)" using assms(3) by (rule assms(2)) + show "B(a): U(i)" by (fact *) +qed end
\ No newline at end of file @@ -14,7 +14,7 @@ section \<open>Constants and syntax\<close> axiomatization Sum :: "[Term, Typefam] \<Rightarrow> Term" and - pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and + pair :: "[Term, Term] \<Rightarrow> Term" ("(1<_,/ _>)") and indSum :: "[[Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<Sum>)") syntax @@ -34,34 +34,33 @@ abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) section \<open>Type rules\<close> axiomatization where - Sum_form: "\<And>i A B. \<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x): U(i)" + Sum_form: "\<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x): U(i)" and - Sum_intro: "\<And>i A B a b. \<lbrakk>A: U(i); B: A \<longrightarrow> U(i); a: A; b: B(a)\<rbrakk> \<Longrightarrow> (a,b) : \<Sum>x:A. B(x)" + Sum_intro: "\<lbrakk>B: A \<longrightarrow> U(i); a: A; b: B(a)\<rbrakk> \<Longrightarrow> <a,b> : \<Sum>x:A. B(x)" and - Sum_elim: "\<And>i A B C f p. \<lbrakk> + Sum_elim: "\<lbrakk> C: \<Sum>x:A. B(x) \<longrightarrow> U(i); - \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f(x)(y) : C((x,y)); + \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f(x)(y) : C(<x,y>); p : \<Sum>x:A. B(x) \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>(f)(p) : C(p)" (* What does writing \<lambda>x y. f(x, y) change? *) and - Sum_comp: "\<And>i A B C f a b. \<lbrakk> - A: U(i); - B: A \<longrightarrow> U(i); + Sum_comp: "\<lbrakk> C: \<Sum>x:A. B(x) \<longrightarrow> U(i); - \<And>x y. \<lbrakk>x: A; y :B(x)\<rbrakk> \<Longrightarrow> f(x)(y) : C((x,y)); + B: A \<longrightarrow> U(i); + \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f(x)(y) : C(<x,y>); a: A; b: B(a) - \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>(f)((a,b)) \<equiv> f(a)(b)" + \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>(f)(<a,b>) \<equiv> f(a)(b)" text "Admissible inference rules for sum formation:" axiomatization where - Sum_form_cond1: "\<And>i A B. (\<Sum>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" + Sum_form_cond1: "(\<Sum>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" and - Sum_form_cond2: "\<And>i A B. (\<Sum>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" + Sum_form_cond2: "(\<Sum>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" lemmas Sum_rules [intro] = Sum_form Sum_intro Sum_elim Sum_comp -lemmas Sum_form_conds [intro (*elim, wellform*)] = Sum_form_cond1 Sum_form_cond2 +lemmas Sum_forms = Sum_form Sum_form_cond1 Sum_form_cond2 lemmas Sum_comps [comp] = Sum_comp @@ -73,7 +72,7 @@ axiomatization where Empty_form: "\<zero> : U(O)" and - Empty_elim: "\<And>i C z. \<lbrakk>C: \<zero> \<longrightarrow> U(i); z: \<zero>\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero>(z): C(z)" + Empty_elim: "\<lbrakk>C: \<zero> \<longrightarrow> U(i); z: \<zero>\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero>(z): C(z)" lemmas Empty_rules [intro] = Empty_form Empty_elim diff --git a/scratch.thy b/scratch.thy index e06fb7e..3141120 100644 --- a/scratch.thy +++ b/scratch.thy @@ -3,6 +3,12 @@ theory scratch begin + +lemma "U(O): U(O)" +proof (rule inhabited_implies_type) + show "\<nat>: U(O)" .. +qed + lemma assumes "\<Sum>x:A. B(x): U(i)" "(a,b): \<Sum>x:A. B(x)" shows "a : A" |