aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Equal.thy2
-rw-r--r--EqualProps.thy21
-rw-r--r--HoTT_Base.thy10
-rw-r--r--HoTT_Methods.thy47
-rw-r--r--Prod.thy2
-rw-r--r--Sum.thy2
-rw-r--r--scratch.thy55
7 files changed, 110 insertions, 29 deletions
diff --git a/Equal.thy b/Equal.thy
index 51a69ae..cb4d4f1 100644
--- a/Equal.thy
+++ b/Equal.thy
@@ -53,7 +53,9 @@ and
\<rbrakk> \<Longrightarrow> indEqual[A] C f a a refl(a) \<equiv> f a"
lemmas Equal_rules [intro] = Equal_form Equal_intro Equal_elim Equal_comp
+lemmas Equal_elims [dest] = Equal_elim
lemmas Equal_form_conds [elim, wellform] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3
+lemmas Equal_comps [comp] = Equal_comp
end \ No newline at end of file
diff --git a/EqualProps.thy b/EqualProps.thy
index 8960a90..2807587 100644
--- a/EqualProps.thy
+++ b/EqualProps.thy
@@ -66,27 +66,6 @@ lemma compose_comp:
assumes "a : A"
shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)"
-proof (unfold rcompose_def)
- show "(\<^bold>\<lambda>p:a =[A] a.
- lambda (a =[A] a)
- (op `
- ((\<^bold>\<lambda>x:A.
- \<^bold>\<lambda>y:A.
- lambda (x =[A] y)
- (indEqual[A]
- (\<lambda>x y _. \<Prod>z:A. y =[A] z \<rightarrow> x =[A] z)
- (\<lambda>x. \<^bold>\<lambda>z:A.
- lambda (x =[A] z)
- (indEqual[A] (\<lambda>x z _. x =[A] z) refl x z))
- x y)) `
- a `
- a `
- p `
- a))) `
- refl(a) `
- refl(a) \<equiv>
- refl(a)"
-
sorry \<comment> \<open>Long and tedious proof if the Simplifier is not set up.\<close>
diff --git a/HoTT_Base.thy b/HoTT_Base.thy
index eaebfb0..cfced79 100644
--- a/HoTT_Base.thy
+++ b/HoTT_Base.thy
@@ -12,9 +12,13 @@ begin
section \<open>Setup\<close>
-text "Declare rules expressing necessary wellformedness conditions for type and inhabitation judgments, to be used by proof methods later (see HoTT_Methods.thy)."
+text "Named theorems to be used by proof methods later (see HoTT_Methods.thy).
+
+\<open>wellform\<close> declares necessary wellformedness conditions for type and inhabitation judgments, while
+\<open>comp\<close> declares computation rules used when simplifying function application."
named_theorems wellform
+named_theorems comp
section \<open>Metalogical definitions\<close>
@@ -32,8 +36,8 @@ text "We formalize the judgments \<open>a : A\<close> and \<open>A : U\<close> s
For judgmental equality we use the existing Pure equality \<open>\<equiv>\<close> and hence do not need to define a separate judgment for it."
consts
- is_a_type :: "Term \<Rightarrow> prop" ("(1_ :/ U)" [0] 1000)
- is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(1_ :/ _)" [0, 0] 1000)
+ is_a_type :: "Term \<Rightarrow> prop" ("(1_ : U)" [0] 1000)
+ is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(1_ : _)" [0, 0] 1000)
text "The following fact is used to make explicit the assumption of well-formed contexts."
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index 20f3ece..81e2055 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -10,6 +10,7 @@ theory HoTT_Methods
"HOL-Eisbach.Eisbach"
"HOL-Eisbach.Eisbach_Tools"
HoTT_Base
+ Prod
begin
@@ -19,17 +20,17 @@ text "Prove type judgments \<open>A : U\<close> and inhabitation judgments \<ope
Can also perform typechecking, and search for elements of a type."
-method simple uses lems = (assumption|standard|rule lems)+
+method simple uses lems = (assumption | standard | rule lems)+
text "Find a proof of any valid typing judgment derivable from a given wellformed judgment."
-method wellformed uses jdgmt = (
+\<comment> \<open>\<open>wellform\<close> is declared in HoTT_Base.thy\<close>
+method wellformed uses jdgmt declares wellform =
match wellform in rl: "PROP ?P" \<Rightarrow> \<open>(
catch \<open>rule rl[OF jdgmt]\<close> \<open>fail\<close> |
catch \<open>wellformed jdgmt: rl[OF jdgmt]\<close> \<open>fail\<close>
)\<close>
- )
text "Combine \<open>simple\<close> and \<open>wellformed\<close> to search for derivations.
@@ -45,7 +46,45 @@ method derive uses lems unfolds = (
)+
-text "Simplify function applications."
+text "Simplify a function application."
+
+method simplify for expr::Term uses lems = match (expr) in
+ "(\<^bold>\<lambda>x:?A. ?b x)`?a" \<Rightarrow> \<open>
+ print_term "Single application",
+ rule Prod_comp,
+ derive lems: lems
+ \<close> \<bar>
+ "(F`a)`b" for F a b \<Rightarrow> \<open>
+ print_term "Repeated application",
+ simplify "F`a"
+ \<close>
+
+
+
+text "Verify a function application simplification."
+
+method verify_simp uses lems = (
+ print_term "Attempting simplification",
+ ( rule comp | derive lems: lems | simp add: lems )+
+ | print_fact lems,
+ match conclusion in
+ "F`a`b \<equiv> x" for F a b x \<Rightarrow> \<open>
+ print_term "Chained application",
+ print_term F,
+ print_term a,
+ print_term b,
+ print_term x,
+ match (F) in
+ "\<^bold>\<lambda>x:A. f x" for A f \<Rightarrow> \<open>
+ print_term "Matched abstraction",
+ print_fact Prod_comp[where ?A = A and ?b = f and ?a = a]
+ \<close> \<bar>
+ "?x" \<Rightarrow> \<open>
+ print_term "Constant application",
+ print_fact comp
+ \<close>
+ \<close>
+ )
end \ No newline at end of file
diff --git a/Prod.thy b/Prod.thy
index 7155a10..9e1c1c3 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -59,7 +59,9 @@ This is what the additional formation rules \<open>Prod_form_cond1\<close> and \
text "The type rules should be able to be used as introduction and elimination rules by the standard reasoner:"
lemmas Prod_rules [intro] = Prod_form Prod_intro Prod_elim Prod_comp Prod_uniq
+lemmas Prod_elims [elim] = Prod_elim
lemmas Prod_form_conds [elim, wellform] = Prod_form_cond1 Prod_form_cond2
+lemmas Prod_comps [comp] = Prod_comp Prod_uniq
text "Nondependent functions are a special case."
diff --git a/Sum.thy b/Sum.thy
index 1e6e6b0..93fa791 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -51,7 +51,9 @@ and
\<rbrakk> \<Longrightarrow> indSum[A,B] C f (a,b) \<equiv> f a b"
lemmas Sum_rules [intro] = Sum_form Sum_intro Sum_elim Sum_comp
+lemmas Sum_elims [dest] = Sum_elim \<comment> \<open>Declaring positively-presented dependent elimination rule as [dest] instead of [elim] arguably makes more sense.\<close>
lemmas Sum_form_conds [elim, wellform] = Sum_form_cond1 Sum_form_cond2
+lemmas Sum_comps [comp] = Sum_comp
\<comment> \<open>Nondependent pair\<close>
abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
diff --git a/scratch.thy b/scratch.thy
index b90fd59..1c921bd 100644
--- a/scratch.thy
+++ b/scratch.thy
@@ -3,6 +3,59 @@ theory scratch
begin
-schematic_goal "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> ?x : A \<times> B" by simple
+(* Typechecking *)
+schematic_goal "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (a,b) : ?A" by simple
+
+
+(* Simplification *)
+
+notepad begin
+
+assume asm:
+ "f`a \<equiv> g"
+ "g`b \<equiv> \<^bold>\<lambda>x:A. d"
+ "c : A"
+ "d : B"
+
+have "f`a`b`c \<equiv> d" by (simp add: asm | rule comp | derive lems: asm)+
+
+end
+
+lemma "a : A \<Longrightarrow> indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) a a refl(a) \<equiv> refl(a)"
+ by verify_simp
+
+lemma "\<lbrakk>a : A; \<And>x. x : A \<Longrightarrow> b x : X\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. b x)`a \<equiv> b a"
+ by verify_simp
+
+lemma
+ assumes "a : A" and "\<And>x. x : A \<Longrightarrow> b x : B x"
+ shows "(\<^bold>\<lambda>x:A. b x)`a \<equiv> b a"
+ by (verify_simp lems: assms)
+
+lemma "\<lbrakk>a : A; b : B a; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
+oops
+
+lemma
+ assumes
+ "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a \<equiv> \<^bold>\<lambda>y:B a. c a y"
+ "(\<^bold>\<lambda>y:B a. c a y)`b \<equiv> c a b"
+ shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
+apply (simp add: assms)
+done
+
+lemmas lems =
+ Prod_comp[where ?A = "B a" and ?b = "\<lambda>b. c a b" and ?a = b]
+ Prod_comp[where ?A = A and ?b = "\<lambda>x. \<^bold>\<lambda>y:B x. c x y" and ?a = a]
+
+lemma
+ assumes
+ "a : A"
+ "b : B a"
+ "B: A \<rightarrow> U"
+ "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> c x y : D x y"
+ shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B x. c x y)`a`b \<equiv> c a b"
+apply (verify_simp lems: assms)
+
+
end \ No newline at end of file