diff options
Diffstat (limited to '')
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | HoTT.thy | 99 | ||||
-rw-r--r-- | test.thy | 35 |
3 files changed, 135 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..b8021cd --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +*.thy~ diff --git a/HoTT.thy b/HoTT.thy new file mode 100644 index 0000000..9d63388 --- /dev/null +++ b/HoTT.thy @@ -0,0 +1,99 @@ +theory HoTT +imports Pure +begin + +section \<open>Setup\<close> + +(* ML files, routines and setup should probably go here *) + +section \<open>Basic definitions\<close> + +text \<open> +A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms. + +For now we do not implement universes, but simply follow the informal notation in the HoTT book. +\<close> +(* Actually unsure if a single meta-type suffices... *) + +typedecl Term + +subsection \<open>Judgements\<close> + +consts + is_a_type :: "Term \<Rightarrow> prop" ("(_ : U)") (* Add precedences when I figure them out! *) + is_of_type :: "Term \<Rightarrow> Term \<Rightarrow> prop" ("(_ : _)") + +subsection \<open>Basic axioms\<close> + +axiomatization +where + inhabited_implies_type: "\<And>x A. x : A \<Longrightarrow> A : U" and + equal_types: "\<And>A B x. A \<equiv> B \<Longrightarrow> x : A \<Longrightarrow> x : B" + +subsection \<open>Basic types\<close> + +subsubsection \<open>Nondependent function type\<close> +(* +Write this for now to test stuff, later I should make +this an instance of the dependent function. +Same for the nondependent product below. +*) + +axiomatization + Function :: "Term \<Rightarrow> Term \<Rightarrow> Term" (infixr "\<rightarrow>" 10) and + lambda :: "(Term \<Rightarrow> Term) \<Rightarrow> Term" (binder "\<^bold>\<lambda>" 10) and (* precedence! *) + appl :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(_`_)") +where + Function_form: "\<And>A B. \<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> A\<rightarrow>B : U" and + Function_intro: "\<And>A B b. (\<And>x. x : A \<Longrightarrow> b(x) : B) \<Longrightarrow> \<^bold>\<lambda>x. b(x) : A\<rightarrow>B" and + Function_elim: "\<And>A B f a. \<lbrakk>f : A\<rightarrow>B; a : A\<rbrakk> \<Longrightarrow> f`a : B" + (* beta and eta reductions should go here *) + +subsubsection \<open>Nondependent product type\<close> + +axiomatization + Product :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(_\<times>/ _)") and + pair :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(_,/ _)") and + rec_Product :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" ("(rec'_Product'(_,_,_,_'))") +where + Product_form: "\<And>A B. \<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> A\<times>B : U" and + Product_intro: "\<And>A B a b. \<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (a,b) : A\<times>B" and + Product_elim: "\<And>A B C g. \<lbrakk>A : U; B : U; C : U; g : A\<rightarrow>B\<rightarrow>C\<rbrakk> \<Longrightarrow> rec_Product(A,B,C,g) : (A\<times>B)\<rightarrow>C" and + Product_comp: "\<And>A B C g a b. \<lbrakk>C : U; g : A\<rightarrow>B\<rightarrow>C; a : A; b : B\<rbrakk> \<Longrightarrow> rec_Product(A,B,C,g)`(a,b) \<equiv> (g`a)`b" + +\<comment> \<open>Projection onto first component\<close> +definition proj1 :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(proj1'(_,_'))") where + "proj1(A,B) \<equiv> rec_Product(A, B, A, \<^bold>\<lambda>x. \<^bold>\<lambda>y. x)" + +subsubsection \<open>Empty type\<close> + +axiomatization + Null :: Term and + ind_Null :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(ind'_Null'(_,/ _'))") +where + Null_form: "Null : U" and + Null_elim: "\<And>C x a. \<lbrakk>x : Null \<Longrightarrow> C(x) : U; a : Null\<rbrakk> \<Longrightarrow> ind_Null(C(x), a) : C(a)" + +subsubsection \<open>Natural numbers\<close> + +axiomatization + Nat :: Term and + zero :: Term ("0") and + succ :: "Term \<Rightarrow> Term" and (* how to enforce \<open>succ : Nat\<rightarrow>Nat\<close>? *) + ind_Nat :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" +where + Nat_form: "Nat : U" and + Nat_intro1: "0 : Nat" and + Nat_intro2: "\<And>n. n : Nat \<Longrightarrow> succ n : Nat" + (* computation rules *) + +subsubsection \<open>Equality type\<close> + +axiomatization + Equal :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" ("(_ =_ _)") and + refl :: "Term \<Rightarrow> Term" ("(refl'(_'))") +where + Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =A b : U" and + Equal_intro: "\<And>A x. x : A \<Longrightarrow> refl x : x =A x" + +end
\ No newline at end of file diff --git a/test.thy b/test.thy new file mode 100644 index 0000000..94ba900 --- /dev/null +++ b/test.thy @@ -0,0 +1,35 @@ +theory test +imports HoTT +begin + +lemma "Null : U" + by (rule Null_form) + +lemma "A \<equiv> B \<Longrightarrow> (\<^bold>\<lambda>x. x) : B\<rightarrow>A" +proof - + have "\<And>x. A \<equiv> B \<Longrightarrow> x : B \<Longrightarrow> x : A" by (rule equal_types) + thus "A \<equiv> B \<Longrightarrow> (\<^bold>\<lambda>x. x) : B\<rightarrow>A" by (rule Function_intro) +qed + +lemma "\<^bold>\<lambda>x. \<^bold>\<lambda>y. x : A\<rightarrow>B\<rightarrow>A" +proof - + have "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. x : B \<rightarrow> A" by (rule Function_intro) + thus "\<^bold>\<lambda>x. \<^bold>\<lambda>y. x : A\<rightarrow>B\<rightarrow>A" by (rule Function_intro) +qed + +(* The previous proofs are nice, BUT I want to be able to do something like the following: +lemma "x : A \<Longrightarrow> \<^bold>\<lambda>x. x : B\<rightarrow>B" <Fail> +i.e. I want to be able to associate a type to variables, and have the type remembered by any +binding I define later. + +Do I need to give up using the \<open>binder\<close> syntax in order to do this? +*) + +lemma "succ(succ 0) : Nat" +proof - + have "(succ 0) : Nat" by (rule Nat_intro2) + from this have "succ(succ 0) : Nat" by (rule Nat_intro2) +qed + + +end
\ No newline at end of file |