diff options
Diffstat (limited to '')
-rw-r--r-- | hott/Equivalence.thy | 48 | ||||
-rw-r--r-- | hott/Identity.thy | 47 | ||||
-rw-r--r-- | hott/List+.thy | 4 | ||||
-rw-r--r-- | spartan/core/Spartan.thy | 72 | ||||
-rw-r--r-- | spartan/core/eqsubst.ML | 4 | ||||
-rw-r--r-- | spartan/core/types.ML | 57 |
6 files changed, 114 insertions, 118 deletions
diff --git a/hott/Equivalence.thy b/hott/Equivalence.thy index a57ed44..99300a0 100644 --- a/hott/Equivalence.thy +++ b/hott/Equivalence.thy @@ -144,8 +144,6 @@ Lemma (def) commute_homotopy: apply (transport eq: pathcomp_refl, transport eq: refl_pathcomp) by refl -\<comment> \<open>TODO: *Really* need normalization during type-checking and better equality - type rewriting to do the proof below properly\<close> Corollary (def) commute_homotopy': assumes "A: U i" @@ -154,21 +152,18 @@ Corollary (def) commute_homotopy': "H: f ~ (id A)" shows "H (f x) = f [H x]" proof - + (*FIXME: Bug; if the following type declaration isn't made then bad things + happen on the next lines.*) from \<open>H: f ~ id A\<close> have [type]: "H: \<Prod>x: A. f x = x" by (reduce add: homotopy_def) - have *: "(id A)[H x]: f x = x" - by (rewrite at "\<hole> = _" id_comp[symmetric], - rewrite at "_ = \<hole>" id_comp[symmetric]) - have "H (f x) \<bullet> H x = H (f x) \<bullet> (id A)[H x]" - by (rule left_whisker, fact *, transport eq: ap_id) (reduce+, refl) + by (rule left_whisker, transport eq: ap_id, refl) also have [simplified id_comp]: "H (f x) \<bullet> (id A)[H x] = f[H x] \<bullet> H x" by (rule commute_homotopy) - finally have *: "{}" using * by this + finally have "{}" by this - show "H (f x) = f [H x]" - by pathcomp_cancelr (fact, typechk+) + thus "H (f x) = f [H x]" by pathcomp_cancelr (fact, typechk+) qed @@ -309,23 +304,11 @@ Lemma (def) is_qinv_if_is_biinv: assumes "A: U i" "B: U i" "f: A \<rightarrow> B" shows "is_biinv f \<rightarrow> is_qinv f" apply intro - - text \<open>Split the hypothesis \<^term>\<open>is_biinv f\<close> into its components and name them.\<close> unfolding is_biinv_def apply elims focus vars _ _ _ g H1 h H2 - text \<open>Need to give the required function and homotopies.\<close> apply (rule is_qinvI) - text \<open>We claim that \<^term>\<open>g\<close> is a quasi-inverse to \<^term>\<open>f\<close>.\<close> \<^item> by (fact \<open>g: _\<close>) - - text \<open>The first part \<^prop>\<open>?H1: g \<circ> f ~ id A\<close> is given by \<^term>\<open>H1\<close>.\<close> \<^item> by (fact \<open>H1: _\<close>) - - text \<open> - It remains to prove \<^prop>\<open>?H2: f \<circ> g ~ id B\<close>. First show that \<open>g ~ h\<close>, - then the result follows from @{thm \<open>H2: f \<circ> h ~ id B\<close>}. Here a proof - block is used for calculational reasoning. - \<close> \<^item> proof - have "g ~ g \<circ> (id B)" by reduce refl also have ".. ~ g \<circ> f \<circ> h" by rhtpy (rule \<open>H2:_\<close>[symmetric]) @@ -437,7 +420,7 @@ Lemma (def) equiv_if_equal: by (rule lift_universe_codomain, rule Ui_in_USi) \<^enum> vars A using [[solve_side_conds=1]] - apply (subst transport_comp) + apply (rewrite transport_comp) \<circ> by (rule Ui_in_USi) \<circ> by reduce (rule in_USi_if_in_Ui) \<circ> by reduce (rule id_is_biinv) @@ -452,24 +435,5 @@ Lemma (def) equiv_if_equal: by (rule lift_universe_codomain, rule Ui_in_USi) done -(*Uncomment this to see all implicits from here on. -no_translations - "f x" \<leftharpoondown> "f `x" - "x = y" \<leftharpoondown> "x =\<^bsub>A\<^esub> y" - "g \<circ> f" \<leftharpoondown> "g \<circ>\<^bsub>A\<^esub> f" - "p\<inverse>" \<leftharpoondown> "CONST pathinv A x y p" - "p \<bullet> q" \<leftharpoondown> "CONST pathcomp A x y z p q" - "fst" \<leftharpoondown> "CONST Spartan.fst A B" - "snd" \<leftharpoondown> "CONST Spartan.snd A B" - "f[p]" \<leftharpoondown> "CONST ap A B x y f p" - "trans P p" \<leftharpoondown> "CONST transport A P x y p" - "trans_const B p" \<leftharpoondown> "CONST transport_const A B x y p" - "lift P p u" \<leftharpoondown> "CONST pathlift A P x y p u" - "apd f p" \<leftharpoondown> "CONST Identity.apd A P f x y p" - "f ~ g" \<leftharpoondown> "CONST homotopy A B f g" - "is_qinv f" \<leftharpoondown> "CONST Equivalence.is_qinv A B f" - "is_biinv f" \<leftharpoondown> "CONST Equivalence.is_biinv A B f" -*) - end diff --git a/hott/Identity.thy b/hott/Identity.thy index 247d6a4..dc27ee8 100644 --- a/hott/Identity.thy +++ b/hott/Identity.thy @@ -242,7 +242,7 @@ Lemma (def) ap_funcomp: "x: A" "y: A" "f: A \<rightarrow> B" "g: B \<rightarrow> C" "p: x = y" - shows "(g \<circ> f)[p] = g[f[p]]" thm ap + shows "(g \<circ> f)[p] = g[f[p]]" apply (eq p) \<^item> by reduce \<^item> by reduce refl @@ -251,10 +251,7 @@ Lemma (def) ap_funcomp: Lemma (def) ap_id: assumes "A: U i" "x: A" "y: A" "p: x = y" shows "(id A)[p] = p" - apply (eq p) - \<^item> by reduce - \<^item> by reduce refl - done + by (eq p) (reduce, refl) section \<open>Transport\<close> @@ -303,7 +300,7 @@ Lemma (def) pathcomp_cancel_left: by (transport eq: inv_pathcomp, transport eq: refl_pathcomp) refl also have ".. = p\<inverse> \<bullet> (p \<bullet> r)" by (transport eq: pathcomp_assoc[symmetric], transport eq: \<open>\<alpha>:_\<close>) refl - also have ".. = r" thm inv_pathcomp + also have ".. = r" by (transport eq: pathcomp_assoc, transport eq: inv_pathcomp, transport eq: refl_pathcomp) refl @@ -339,7 +336,7 @@ Lemma (def) transport_left_inv: "x: A" "y: A" "p: x = y" shows "(trans P p\<inverse>) \<circ> (trans P p) = id (P x)" - by (eq p) (reduce; refl) + by (eq p) (reduce, refl) Lemma (def) transport_right_inv: assumes @@ -440,10 +437,7 @@ Lemma (def) pathlift_fst: "u: P x" "p: x = y" shows "fst[lift P p u] = p" - apply (eq p) - \<^item> by reduce - \<^item> by reduce refl - done + by (eq p) (reduce, refl) section \<open>Dependent paths\<close> @@ -585,10 +579,10 @@ end section \<open>Loop space\<close> definition \<Omega> where "\<Omega> A a \<equiv> a =\<^bsub>A\<^esub> a" -definition \<Omega>2 where "\<Omega>2 A a \<equiv> \<Omega> (\<Omega> A a) (refl a)" +definition \<Omega>2 where "\<Omega>2 A a \<equiv> refl a =\<^bsub>a =\<^bsub>A\<^esub> a\<^esub> refl a" -Lemma \<Omega>2_alt_def: - "\<Omega>2 A a \<equiv> refl a = refl a" +Lemma \<Omega>2_\<Omega>_of_\<Omega>: + "\<Omega>2 A a \<equiv> \<Omega> (\<Omega> A a) (refl a)" unfolding \<Omega>2_def \<Omega>_def . @@ -604,23 +598,20 @@ interpretation \<Omega>2: notation \<Omega>2.horiz_pathcomp (infix "\<star>" 121) notation \<Omega>2.horiz_pathcomp' (infix "\<star>''" 121) -Lemma [type]: +Lemma assumes "\<alpha>: \<Omega>2 A a" and "\<beta>: \<Omega>2 A a" - shows horiz_pathcomp_type: "\<alpha> \<star> \<beta>: \<Omega>2 A a" - and horiz_pathcomp'_type: "\<alpha> \<star>' \<beta>: \<Omega>2 A a" + shows horiz_pathcomp_type [type]: "\<alpha> \<star> \<beta>: \<Omega>2 A a" + and horiz_pathcomp'_type [type]: "\<alpha> \<star>' \<beta>: \<Omega>2 A a" using assms - unfolding \<Omega>2.horiz_pathcomp_def \<Omega>2.horiz_pathcomp'_def \<Omega>2_alt_def + unfolding \<Omega>2.horiz_pathcomp_def \<Omega>2.horiz_pathcomp'_def \<Omega>2_def by reduce+ Lemma (def) pathcomp_eq_horiz_pathcomp: assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" shows "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>" unfolding \<Omega>2.horiz_pathcomp_def - (*FIXME: Definitional unfolding + normalization; shouldn't need explicit - unfolding*) - using assms[unfolded \<Omega>2_alt_def, type] + using assms[unfolded \<Omega>2_def, type] (*TODO: A `noting` keyword that puts the noted theorem into [type]*) proof (reduce, rule pathinv) - \<comment> \<open>Propositional equality rewriting needs to be improved\<close> have "refl (refl a) \<bullet> \<alpha> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<alpha>" by (rule pathcomp_refl) also have ".. = \<alpha>" by (rule refl_pathcomp) @@ -641,7 +632,7 @@ Lemma (def) pathcomp_eq_horiz_pathcomp': assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" shows "\<alpha> \<star>' \<beta> = \<beta> \<bullet> \<alpha>" unfolding \<Omega>2.horiz_pathcomp'_def - using assms[unfolded \<Omega>2_alt_def, type] + using assms[unfolded \<Omega>2_def, type] proof reduce have "refl (refl a) \<bullet> \<beta> \<bullet> refl (refl a) = refl (refl a) \<bullet> \<beta>" by (rule pathcomp_refl) @@ -662,20 +653,18 @@ Lemma (def) pathcomp_eq_horiz_pathcomp': Lemma (def) eckmann_hilton: assumes "\<alpha>: \<Omega>2 A a" "\<beta>: \<Omega>2 A a" shows "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>" - using assms[unfolded \<Omega>2_alt_def, type] + using \<Omega>2_def[comp] proof - have "\<alpha> \<bullet> \<beta> = \<alpha> \<star> \<beta>" by (rule pathcomp_eq_horiz_pathcomp) also have [simplified comp]: ".. = \<alpha> \<star>' \<beta>" - \<comment> \<open>Danger, Will Robinson! (Inferred implicit has an equivalent form but - needs to be manually simplified.)\<close> + \<comment> \<open>Danger! Inferred implicit has an equivalent form but needs to be + manually simplified.\<close> by (transport eq: \<Omega>2.horiz_pathcomp_eq_horiz_pathcomp') refl also have ".. = \<beta> \<bullet> \<alpha>" by (rule pathcomp_eq_horiz_pathcomp') finally show "\<alpha> \<bullet> \<beta> = \<beta> \<bullet> \<alpha>" - by (this; reduce add: \<Omega>2_alt_def[symmetric]) - \<comment> \<open>TODO: The finishing call to `reduce` should be unnecessary with some - kind of definitional unfolding.\<close> + by this qed end diff --git a/hott/List+.thy b/hott/List+.thy index b73cc24..869d667 100644 --- a/hott/List+.thy +++ b/hott/List+.thy @@ -10,8 +10,8 @@ section \<open>Length\<close> definition [implicit]: "len \<equiv> ListRec ? Nat 0 (fn _ _ rec. suc rec)" experiment begin - Lemma "len [] \<equiv> ?n" by (subst comp) - Lemma "len [0, suc 0, suc (suc 0)] \<equiv> ?n" by (subst comp) + Lemma "len [] \<equiv> ?n" by (subst comp; typechk?) + Lemma "len [0, suc 0, suc (suc 0)] \<equiv> ?n" by (subst comp; typechk?)+ end diff --git a/spartan/core/Spartan.thy b/spartan/core/Spartan.thy index 10caa30..6b2ed58 100644 --- a/spartan/core/Spartan.thy +++ b/spartan/core/Spartan.thy @@ -181,18 +181,16 @@ axiomatization where \<rbrakk> \<Longrightarrow> \<Sum>x: A. B x \<equiv> \<Sum>x: A. B' x" -section \<open>Infrastructure\<close> +section \<open>Type checking & inference\<close> ML_file \<open>lib.ML\<close> ML_file \<open>context_facts.ML\<close> ML_file \<open>context_tactical.ML\<close> -subsection \<open>Type-checking/inference\<close> - -\<comment> \<open>Rule attributes for the type-checker\<close> +\<comment> \<open>Rule attributes for the typechecker\<close> named_theorems form and intr and comp -\<comment> \<open>Defines elimination automation and the `elim` attribute\<close> +\<comment> \<open>Elimination/induction automation and the `elim` attribute\<close> ML_file \<open>elimination.ML\<close> lemmas @@ -203,7 +201,20 @@ lemmas [comp] = beta Sig_comp and [cong] = Pi_cong lam_cong Sig_cong -\<comment> \<open>Type-checking\<close> +\<comment> \<open>Subsumption rule\<close> +lemma sub: + assumes "a: A" "A \<equiv> A'" + shows "a: A'" + using assms by simp + +\<comment> \<open>Basic substitution of definitional equalities\<close> +ML_file \<open>~~/src/Tools/misc_legacy.ML\<close> +ML_file \<open>~~/src/Tools/IsaPlanner/isand.ML\<close> +ML_file \<open>~~/src/Tools/IsaPlanner/rw_inst.ML\<close> +ML_file \<open>~~/src/Tools/IsaPlanner/zipper.ML\<close> +ML_file \<open>~~/src/Tools/eqsubst.ML\<close> + +\<comment> \<open>Term normalization, type checking & inference\<close> ML_file \<open>types.ML\<close> method_setup typechk = @@ -214,14 +225,26 @@ method_setup known = \<open>Scan.succeed (K (CONTEXT_METHOD ( CHEADGOAL o Types.known_ctac)))\<close> -subsection \<open>Statement commands\<close> +setup \<open> +let val typechk = fn ctxt => + NO_CONTEXT_TACTIC ctxt o Types.check_infer + (Simplifier.prems_of ctxt @ Context_Facts.known ctxt) +in + map_theory_simpset (fn ctxt => ctxt + addSolver (mk_solver "" typechk)) +end +\<close> + + +section \<open>Statements and goals\<close> ML_file \<open>focus.ML\<close> ML_file \<open>elaboration.ML\<close> ML_file \<open>elaborated_statement.ML\<close> ML_file \<open>goals.ML\<close> -subsection \<open>Proof methods\<close> + +section \<open>Proof methods\<close> named_theorems intro \<comment> \<open>Logical introduction rules\<close> @@ -270,6 +293,7 @@ subsection \<open>Reflexivity\<close> named_theorems refl method refl = (rule refl) + subsection \<open>Trivial proofs (modulo automatic discharge of side conditions)\<close> method_setup this = @@ -278,16 +302,9 @@ method_setup this = (CONTEXT_TACTIC' (fn ctxt => resolve_tac ctxt facts)) facts))))\<close> -subsection \<open>Rewriting\<close> -\<comment> \<open>\<open>subst\<close> method\<close> -ML_file \<open>~~/src/Tools/misc_legacy.ML\<close> -ML_file \<open>~~/src/Tools/IsaPlanner/isand.ML\<close> -ML_file \<open>~~/src/Tools/IsaPlanner/rw_inst.ML\<close> -ML_file \<open>~~/src/Tools/IsaPlanner/zipper.ML\<close> -ML_file \<open>eqsubst.ML\<close> +subsection \<open>Rewriting\<close> -\<comment> \<open>\<open>rewrite\<close> method\<close> consts rewrite_HOLE :: "'a::{}" ("\<hole>") lemma eta_expand: @@ -315,20 +332,18 @@ ML_file \<open>~~/src/HOL/Library/cconv.ML\<close> ML_file \<open>rewrite.ML\<close> \<comment> \<open>\<open>reduce\<close> computes terms via judgmental equalities\<close> -setup \<open>map_theory_simpset (fn ctxt => - ctxt addSolver (mk_solver "" (fn ctxt' => - NO_CONTEXT_TACTIC ctxt' o Types.check_infer (Simplifier.prems_of ctxt'))))\<close> - method reduce uses add = - changed \<open>repeat_new \<open>(simp add: comp add | sub comp); typechk?\<close>\<close> + changed \<open>repeat_new \<open>(simp add: comp add | subst comp); typechk?\<close>\<close> -subsection \<open>Congruence automation\<close> + +subsection \<open>Congruence relations\<close> consts "rhs" :: \<open>'a\<close> ("..") ML_file \<open>congruence.ML\<close> -subsection \<open>Implicits\<close> + +section \<open>Implicits\<close> text \<open> \<open>?\<close> is used to mark implicit arguments in definitions, while \<open>{}\<close> is expanded @@ -364,7 +379,8 @@ translations translations "\<lambda>x. b" \<leftharpoondown> "\<lambda>x: A. b" -subsection \<open>Lambda coercion\<close> + +section \<open>Lambda coercion\<close> \<comment> \<open>Coerce object lambdas to meta-lambdas\<close> abbreviation (input) lambda :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> @@ -389,7 +405,7 @@ Lemma refine_codomain: "f: \<Prod>x: A. B x" "\<And>x. x: A \<Longrightarrow> f `x: C x" shows "f: \<Prod>x: A. C x" - by (subst eta_exp) + by (rewrite eta_exp) Lemma lift_universe_codomain: assumes "A: U i" "f: A \<rightarrow> U j" @@ -463,12 +479,12 @@ lemma Lemma id_left [comp]: assumes "A: U i" "B: U i" "f: A \<rightarrow> B" shows "(id B) \<circ>\<^bsub>A\<^esub> f \<equiv> f" - by (subst eta_exp[of f]) (reduce, rule eta) + by (rewrite eta_exp[of f]) (reduce, rule eta) Lemma id_right [comp]: assumes "A: U i" "B: U i" "f: A \<rightarrow> B" shows "f \<circ>\<^bsub>A\<^esub> (id A) \<equiv> f" - by (subst eta_exp[of f]) (reduce, rule eta) + by (rewrite eta_exp[of f]) (reduce, rule eta) lemma id_U [type]: "id (U i): U i \<rightarrow> U i" @@ -494,7 +510,7 @@ Lemma fst_comp [comp]: Lemma snd_type [type]: assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i" shows "snd A B: \<Prod>p: \<Sum>x: A. B x. B (fst A B p)" - unfolding snd_def by typechk reduce + unfolding snd_def by typechk Lemma snd_comp [comp]: assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i" "a: A" "b: B a" diff --git a/spartan/core/eqsubst.ML b/spartan/core/eqsubst.ML index 31d5126..5ae8c73 100644 --- a/spartan/core/eqsubst.ML +++ b/spartan/core/eqsubst.ML @@ -430,12 +430,12 @@ val _ = Method.setup \<^binding>\<open>sub\<close> (parser >> (fn ((asm, occs), inthms) => fn ctxt => SIMPLE_METHOD' ( (if asm then eqsubst_asm_tac else eqsubst_tac) ctxt occs inthms))) - "single-step substitution" #> + "single-step substitution" (* #> Method.setup \<^binding>\<open>subst\<close> (parser >> (fn ((asm, occs), inthms) => K (CONTEXT_METHOD ( CHEADGOAL o SIDE_CONDS 0 ((if asm then eqsubst_asm_ctac else eqsubst_ctac) occs inthms))))) - "single-step substitution with automatic discharge of side conditions" + "single-step substitution with automatic discharge of side conditions" *) ) end diff --git a/spartan/core/types.ML b/spartan/core/types.ML index 70e5057..67918b9 100644 --- a/spartan/core/types.ML +++ b/spartan/core/types.ML @@ -43,42 +43,69 @@ fun known_ctac facts = CONTEXT_SUBGOAL (fn (goal, i) => fn (ctxt, st) => if Lib.no_vars concl orelse (Lib.is_typing concl andalso Lib.no_vars (Lib.term_of_typing concl)) then - let val ths = known ctxt @ map (Simplifier.norm_hhf ctxt) facts + let val ths = known ctxt @ facts in st |> (assume_tac ctxt ORELSE' resolve_tac ctxt ths THEN_ALL_NEW K no_tac) i end else Seq.empty end) -(*Simple bidirectional typing tactic, with some nondeterminism from backtracking - search over input facts. The current implementation does not perform any - normalization.*) +(*Simple bidirectional typing tactic with some backtracking search over input + facts.*) fun check_infer_step facts i (ctxt, st) = let - val tac = SUBGOAL (fn (goal, i) => + val refine_tac = SUBGOAL (fn (goal, i) => if Lib.rigid_typing_concl goal then - let val net = Tactic.build_net ( - map (Simplifier.norm_hhf ctxt) facts - @(cond ctxt) - @(Named_Theorems.get ctxt \<^named_theorems>\<open>form\<close>) - @(Named_Theorems.get ctxt \<^named_theorems>\<open>intr\<close>) - @(map #1 (Elim.rules ctxt))) - in (resolve_from_net_tac ctxt net) i end + let + val net = Tactic.build_net ( + map (Simplifier.norm_hhf ctxt) facts + @(cond ctxt) + @(Named_Theorems.get ctxt \<^named_theorems>\<open>form\<close>) + @(Named_Theorems.get ctxt \<^named_theorems>\<open>intr\<close>) + @(map #1 (Elim.rules ctxt))) + in resolve_from_net_tac ctxt net i end else no_tac) + val sub_tac = SUBGOAL (fn (goal, i) => + let val concl = Logic.strip_assums_concl goal in + if Lib.is_typing concl + andalso Lib.is_rigid (Lib.term_of_typing concl) + andalso Lib.no_vars (Lib.type_of_typing concl) + then + (resolve_tac ctxt @{thms sub} + THEN' SUBGOAL (fn (_, i) => + NO_CONTEXT_TACTIC ctxt (check_infer facts i)) + THEN' compute_tac ctxt facts + THEN_ALL_NEW K no_tac) i + else no_tac end) + val ctxt' = ctxt (*TODO: Use this to store already-derived typing judgments*) in - TACTIC_CONTEXT ctxt' (tac i st) + TACTIC_CONTEXT ctxt' ( + (NO_CONTEXT_TACTIC ctxt' o known_ctac facts + ORELSE' refine_tac + ORELSE' sub_tac) i st) end -fun check_infer facts i (cst as (_, st)) = +and check_infer facts i (cst as (_, st)) = let - val ctac = known_ctac facts CORELSE' check_infer_step facts + val ctac = check_infer_step facts in cst |> (ctac i CTHEN CREPEAT_IN_RANGE i (Thm.nprems_of st - i) (CTRY o CREPEAT_ALL_NEW_FWD ctac)) end +and compute_tac ctxt facts = + let + val comps = Named_Theorems.get ctxt \<^named_theorems>\<open>comp\<close> + val ctxt' = ctxt addsimps comps + in + SUBGOAL (fn (_, i) => + ((CHANGED o asm_simp_tac ctxt' ORELSE' EqSubst.eqsubst_tac ctxt [0] comps) + THEN_ALL_NEW SUBGOAL (fn (_, i) => + NO_CONTEXT_TACTIC ctxt (check_infer facts i))) i) + end + end |