diff options
Diffstat (limited to '')
-rw-r--r-- | ProdProps.thy | 29 |
1 files changed, 5 insertions, 24 deletions
diff --git a/ProdProps.thy b/ProdProps.thy index 2145bf9..7071b39 100644 --- a/ProdProps.thy +++ b/ProdProps.thy @@ -39,35 +39,16 @@ proof (subst (0 1 2 3) compose_def) qed -lemma compose_comp': +lemma compose_comp: assumes "A: U(i)" and "\<And>x. x: A \<Longrightarrow> b(x): B" and "\<And>x. x: B \<Longrightarrow> c(x): C(x)" shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))" proof (subst compose_def, subst Prod_eq) - show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`x) \<equiv> \<^bold>\<lambda>x. c (b x)" + show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a" proof compute - - - -text "However we can derive a variant with more explicit premises:" - -lemma compose_comp: - assumes - "A: U(i)" "B: U(i)" "C: B \<longrightarrow> U(i)" and - "\<And>x. x: A \<Longrightarrow> b(x): B" and - "\<And>x. x: B \<Longrightarrow> c(x): C(x)" - shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))" -proof (subst compose_def) - show "\<^bold>\<lambda>x. (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`x) \<equiv> \<^bold>\<lambda>x. c(b(x))" - proof - show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`a) \<equiv> c(b(a))" - proof compute - show "\<And>a. a: A \<Longrightarrow> c((\<^bold>\<lambda>x. b(x))`a) \<equiv> c(b(a))" by compute (simple lems: assms) - qed (simple lems: assms) - qed fact + show "\<And>a. a: A \<Longrightarrow> c((\<^bold>\<lambda>x. b(x))`a) \<equiv> (\<^bold>\<lambda>x. c(b(x)))`a" + by compute (simple lems: assms, compute?)+ + qed (simple lems: assms) qed (simple lems: assms) -lemmas compose_comps [comp] = compose_def compose_comp - - end |