diff options
Diffstat (limited to '')
-rw-r--r-- | tests/Test.thy | 24 |
1 files changed, 12 insertions, 12 deletions
diff --git a/tests/Test.thy b/tests/Test.thy index c0dc0dd..b0eb87a 100644 --- a/tests/Test.thy +++ b/tests/Test.thy @@ -31,37 +31,37 @@ text " Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following. " -proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" by (simple lems: assms) +proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" by (routine lems: assms) proposition assumes "A : U(i)" and "A \<equiv> B" shows "\<^bold>\<lambda>x. x : B \<rightarrow> A" proof - have "A \<rightarrow> A \<equiv> B \<rightarrow> A" using assms by simp - moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (simple lems: assms) + moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (routine lems: assms) ultimately show "\<^bold>\<lambda>x. x : B \<rightarrow> A" by simp qed proposition assumes "A : U(i)" and "B : U(i)" shows "\<^bold>\<lambda>x y. x : A \<rightarrow> B \<rightarrow> A" -by (simple lems: assms) +by (routine lems: assms) subsection \<open>Function application\<close> -proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a" by (simple lems: assms) +proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a" by (derive lems: assms) text "Currying:" lemma assumes "a : A" and "\<And>x. x: A \<Longrightarrow> B(x): U(i)" shows "(\<^bold>\<lambda>x y. y)`a \<equiv> \<^bold>\<lambda>y. y" -proof - show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. y : B(x) \<rightarrow> B(x)" by (simple lems: assms) +proof compute + show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. y : B(x) \<rightarrow> B(x)" by (routine lems: assms) qed fact -lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b" by (compute, simple) +lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b" by derive lemma "\<lbrakk>A: U(i); a : A \<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. f x y)`a \<equiv> \<^bold>\<lambda>y. f a y" proof compute @@ -82,7 +82,7 @@ proposition curried_function_formation: "B: A \<longrightarrow> U(i)" and "\<And>x. C(x): B(x) \<longrightarrow> U(i)" shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U(i)" - by (simple lems: assms) + by (routine lems: assms) proposition higher_order_currying_formation: @@ -92,13 +92,13 @@ proposition higher_order_currying_formation: "\<And>x y. y: B(x) \<Longrightarrow> C(x)(y): U(i)" and "\<And>x y z. z : C(x)(y) \<Longrightarrow> D(x)(y)(z): U(i)" shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z): U(i)" - by (simple lems: assms) + by (routine lems: assms) lemma curried_type_judgment: assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "\<And>x y. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y" shows "\<^bold>\<lambda>x y. f x y : \<Prod>x:A. \<Prod>y:B(x). C x y" - by (simple lems: assms) + by (routine lems: assms) text " @@ -109,13 +109,13 @@ text " definition Id :: "Term" where "Id \<equiv> \<^bold>\<lambda>x. x" lemma "\<lbrakk>x: A\<rbrakk> \<Longrightarrow> Id`x \<equiv> x" -unfolding Id_def by (compute, simple) +unfolding Id_def by (compute, routine) section \<open>Natural numbers\<close> text "Automatic proof methods recognize natural numbers." -proposition "succ(succ(succ 0)): Nat" by simple +proposition "succ(succ(succ 0)): Nat" by routine end |