aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Equal.thy2
-rw-r--r--EqualProps.thy50
2 files changed, 26 insertions, 26 deletions
diff --git a/Equal.thy b/Equal.thy
index bd7dd93..11a966b 100644
--- a/Equal.thy
+++ b/Equal.thy
@@ -37,7 +37,7 @@ and
\<And>x. x: A \<Longrightarrow> f(x) : C(x)(x)(refl x);
x: A;
y: A;
- p: a =\<^sub>A b
+ p: x =\<^sub>A y
\<rbrakk> \<Longrightarrow> ind\<^sub>=(f)(p) : C(x)(y)(p)"
and
Equal_comp: "\<lbrakk>
diff --git a/EqualProps.thy b/EqualProps.thy
index 81f038f..3c9b971 100644
--- a/EqualProps.thy
+++ b/EqualProps.thy
@@ -47,7 +47,7 @@ text "
Raw composition function, of type \<open>\<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)\<close> polymorphic over the type \<open>A\<close>.
"
-definition rpathcomp :: Term where "rpathcomp \<equiv> \<^bold>\<lambda>x y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= (\<lambda>x. refl(x)) q) p"
+definition rpathcomp :: Term where "rpathcomp \<equiv> \<^bold>\<lambda>_ _ p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>_ q. ind\<^sub>= (\<lambda>x. refl(x)) q) p"
text "
More complicated proofs---the nested path inductions require more explicit step-by-step rule applications:
@@ -121,51 +121,51 @@ proof compute
proof compute
{ fix y assume 1: "y: A"
show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: a =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z)"
- proof
- fix p assume 2: "p: a =\<^sub>A y"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z"
- proof (rule Equal_elim[where ?x=a and ?y=y])
- fix u assume 3: "u: A"
- show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =[A] z \<rightarrow> u =[A] z"
+ proof
+ fix p assume 2: "p: a =\<^sub>A y"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z"
+ proof (rule Equal_elim[where ?x=a and ?y=y])
+ fix u assume 3: "u: A"
+ show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
+ proof
+ fix z assume 4: "z: A"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
- fix z assume 4: "z: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
- by (rule Equal_elim[where ?x=u and ?y=z]) (simple lems: assms 3 4)
- qed (simple lems: assms 3 4)
- qed fact
- qed (simple lems: assms 1 2)
- qed (simple lems: assms 1) }
+ show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ by (rule Equal_elim[where ?x=u and ?y=z]) (simple lems: assms 3 4)
+ qed (simple lems: assms 3 4)
+ qed fact
+ qed (simple lems: assms 1 2)
+ qed (simple lems: assms 1) }
show "(\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p)`refl(a)`a`refl(a) \<equiv> refl(a)"
proof compute
{ fix p assume 1: "p: a =\<^sub>A a"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p: \<Prod>z:A. a =\<^sub>A a \<rightarrow> a =\<^sub>A z"
+ show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. a =\<^sub>A z \<rightarrow> a =\<^sub>A z"
proof (rule Equal_elim[where ?x=a and ?y=a])
fix u assume 2: "u: A"
- show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A u\<rightarrow> u =\<^sub>A z"
+ show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
fix z assume 3: "z: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A u \<rightarrow> u =\<^sub>A z"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
- show "\<And>q. q: u =\<^sub>A u \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
by (rule Equal_elim[where ?x=u and ?y=z]) (simple lems: assms 2 3)
- qed (simple lems: assms 2)
+ qed (simple lems: assms 2 3)
qed fact
qed (simple lems: assms 1) }
show "(ind\<^sub>=(\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q)(refl(a)))`a`refl(a) \<equiv> refl(a)"
proof compute
{ fix u assume 1: "u: A"
- show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A u\<rightarrow> u =\<^sub>A z"
+ show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
fix z assume 2: "z: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A u \<rightarrow> u =\<^sub>A z"
+ show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
proof
- show "\<And>q. q: u =\<^sub>A u \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
+ show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
by (rule Equal_elim[where ?x=u and ?y=z]) (simple lems: assms 1 2)
- qed (simple lems: assms 1)
+ qed (simple lems: assms 1 2)
qed fact }
show "(\<^bold>\<lambda>z q. ind\<^sub>= refl q)`a`refl(a) \<equiv> refl(a)"