aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Eq.thy159
-rw-r--r--Prod.thy13
2 files changed, 100 insertions, 72 deletions
diff --git a/Eq.thy b/Eq.thy
index 0cb86d1..a89e56b 100644
--- a/Eq.thy
+++ b/Eq.thy
@@ -74,7 +74,10 @@ subsection \<open>Symmetry (path inverse)\<close>
definition inv :: "[t, t, t, t] \<Rightarrow> t"
where "inv A x y p \<equiv> indEq (\<lambda>x y. ^(y =[A] x)) (\<lambda>x. refl x) x y p"
-syntax "_inv" :: "t \<Rightarrow> t" ("~_" [1000])
+syntax "_inv" :: "[t, t, t, t] \<Rightarrow> t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000])
+translations "inv[A, x, y] p" \<rightleftharpoons> "(CONST inv) A x y p"
+
+syntax "_inv'" :: "t \<Rightarrow> t" ("~_" [1000])
text \<open>Pretty-printing switch for path inverse:\<close>
@@ -83,17 +86,17 @@ ML \<open>val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K t
print_translation \<open>
let fun inv_tr' ctxt [A, x, y, p] =
if Config.get ctxt pretty_inv
- then Syntax.const @{syntax_const "_inv"} $ p
- else @{const inv} $ A $ x $ y $ p
+ then Syntax.const @{syntax_const "_inv'"} $ p
+ else Syntax.const @{syntax_const "_inv"} $ A $ x $ y $ p
in
[(@{const_syntax inv}, inv_tr')]
end
\<close>
-lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv A x y p: y =[A] x"
+lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv[A, x, y] p: y =[A] x"
unfolding inv_def by derive
-lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv A a a (refl a) \<equiv> refl a"
+lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv[A, a, a] (refl a) \<equiv> refl a"
unfolding inv_def by derive
declare
@@ -118,7 +121,10 @@ where
(\<lambda>x. \<lambda>z: A. \<lambda>q: x =[A] z. indEq (\<lambda>x z _. x =[A] z) (\<lambda>x. refl x) x z q)
x y p)`z`q"
-syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "*" 110)
+syntax "_pathcomp" :: "[t, t, t, t, t, t] \<Rightarrow> t" ("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000])
+translations "pathcomp[A, x, y, z] p q" \<rightleftharpoons> "(CONST pathcomp) A x y z p q"
+
+syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" (infixl "^" 110)
ML \<open>val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\<close>
\<comment> \<open>Pretty-printing switch for path composition\<close>
@@ -126,8 +132,8 @@ ML \<open>val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathc
print_translation \<open>
let fun pathcomp_tr' ctxt [A, x, y, z, p, q] =
if Config.get ctxt pretty_pathcomp
- then Syntax.const @{syntax_const "_pathcomp"} $ p $ q
- else @{const pathcomp} $ A $ x $ y $ z $ p $ q
+ then Syntax.const @{syntax_const "_pathcomp'"} $ p $ q
+ else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z $ p $ q
in
[(@{const_syntax pathcomp}, pathcomp_tr')]
end
@@ -135,12 +141,12 @@ end
lemma pathcomp_type:
assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z"
- shows "pathcomp A x y z p q: x =[A] z"
+ shows "pathcomp[A, x, y, z] p q: x =[A] z"
unfolding pathcomp_def by (derive lems: transitivity)
lemma pathcomp_comp:
assumes [intro]: "A: U i" "a: A"
- shows "pathcomp A a a a (refl a) (refl a) \<equiv> refl a"
+ shows "pathcomp[A, a, a, a] (refl a) (refl a) \<equiv> refl a"
unfolding pathcomp_def by (derive lems: transitivity)
declare
@@ -152,43 +158,43 @@ section \<open>Higher groupoid structure of types\<close>
schematic_goal pathcomp_idr:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp A x y y p (refl y) =[x =[A] y] p"
+ shows "?prf: pathcomp[A, x, y, y] p (refl y) =[x =[A] y] p"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp A x x x (refl x) (refl x) =[x =[A] x] (refl x)"
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_idl:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp A x x y (refl x) p =[x =[A] y] p"
+ shows "?prf: pathcomp[A, x, x, y] (refl x) p =[x =[A] y] p"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp A x x x (refl x) (refl x) =[x =[A] x] (refl x)"
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_invr:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp A x y x p (inv A x y p) =[x =[A] x] (refl x)"
+ shows "?prf: pathcomp[A, x, y, x] p (inv[A, x, y] p) =[x =[A] x] (refl x)"
proof (path_ind' x y p)
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
- pathcomp A x x x (refl x) (inv A x x (refl x)) =[x =[A] x] (refl x)"
+ pathcomp[A, x, x, x] (refl x) (inv[A, x, x] (refl x)) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_invl:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: pathcomp A y x y (inv A x y p) p =[y =[A] y] refl(y)"
+ shows "?prf: pathcomp[A, y, x, y] (inv[A, x, y] p) p =[y =[A] y] refl(y)"
proof (path_ind' x y p)
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
- pathcomp A x x x (inv A x x (refl x)) (refl x) =[x =[A] x] (refl x)"
+ pathcomp[A, x, x, x] (inv[A, x, x] (refl x)) (refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal inv_involutive:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
- shows "?prf: inv A y x (inv A x y p) =[x =[A] y] p"
+ shows "?prf: inv[A, y, x] (inv[A, x, y] p) =[x =[A] y] p"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)"
by derive
@@ -208,31 +214,31 @@ schematic_goal pathcomp_assoc:
assumes [intro]: "A: U i"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. \<Prod>w: A. \<Prod>r: z =[A] w.
- pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w]
- pathcomp A x z w (pathcomp A x y z p q) r"
+ pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w]
+ pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r"
apply (quantify 3)
apply (path_ind "{x, y, p}
\<Prod>(z: A). \<Prod>(q: y =[A] z). \<Prod>(w: A). \<Prod>(r: z =[A] w).
- pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w]
- pathcomp A x z w (pathcomp A x y z p q) r")
+ pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w]
+ pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r")
apply (quantify 2)
-apply (path_ind "{xa, z, q}
+apply (path_ind "{x, z, q}
\<Prod>(w: A). \<Prod>(r: z =[A] w).
- pathcomp A xa xa w (refl xa) (pathcomp A xa z w q r) =[xa =[A] w]
- pathcomp A xa z w (pathcomp A xa xa z (refl xa) q) r")
+ pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, z, w] q r) =[x =[A] w]
+ pathcomp[A, x, z, w] (pathcomp[A, x, x, z] (refl x) q) r")
apply (quantify 2)
-apply (path_ind "{xb, w, r}
- pathcomp A xb xb w (refl xb) (pathcomp A xb xb w (refl xb) r) =[xb =[A] w]
- pathcomp A xb xb w (pathcomp A xb xb xb (refl xb) (refl xb)) r")
+apply (path_ind "{x, w, r}
+ pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, x, w] (refl x) r) =[x =[A] w]
+ pathcomp[A, x, x, w] (pathcomp[A, x, x, x] (refl x) (refl x)) r")
text \<open>The rest is now routine.\<close>
proof -
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
- pathcomp A x x x (refl x) (pathcomp A x x x (refl x) (refl x)) =[x =[A] x]
- pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x)"
+ pathcomp[A, x, x, x] (refl x) (pathcomp[A, x, x, x] (refl x) (refl x)) =[x =[A] x]
+ pathcomp[A, x, x, x] (pathcomp[A, x, x, x] (refl x) (refl x)) (refl x)"
by derive
qed routine
@@ -253,15 +259,18 @@ by (path_ind' x y p, rule Eq_routine, routine)
definition ap :: "[t, t, t, t, t] \<Rightarrow> t"
where "ap B f x y p \<equiv> indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p"
-syntax "_ap" :: "[t, t] \<Rightarrow> t" ("(_{_})" [1000, 0] 1000)
+syntax "_ap" :: "[t, t, t, t, t] \<Rightarrow> t" ("(2ap[_, _, _] _ _)" [0, 0, 0, 1000, 1000])
+translations "ap[B, x, y] f p" \<rightleftharpoons> "(CONST ap) B f x y p"
+
+syntax "_ap'" :: "[t, t] \<Rightarrow> t" ("(_{_})" [1000, 0] 1000)
ML \<open>val pretty_ap = Attrib.setup_config_bool @{binding "pretty_ap"} (K true)\<close>
print_translation \<open>
let fun ap_tr' ctxt [B, f, x, y, p] =
if Config.get ctxt pretty_ap
- then Syntax.const @{syntax_const "_ap"} $ f $ p
- else @{const ap} $ B $ f $ x $ y $ p
+ then Syntax.const @{syntax_const "_ap'"} $ f $ p
+ else Syntax.const @{syntax_const "_ap"} $ B $ x $ y $ f $ p
in
[(@{const_syntax ap}, ap_tr')]
end
@@ -271,12 +280,12 @@ lemma ap_type:
assumes
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
- shows "ap B f x y p: f`x =[B] f`y"
+ shows "ap[B, x, y] f p: f`x =[B] f`y"
unfolding ap_def using assms by (rule transfer)
lemma ap_comp:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A"
- shows "ap B f x x (refl x) \<equiv> refl (f`x)"
+ shows "ap[B, x, x] f (refl x) \<equiv> refl (f`x)"
unfolding ap_def by derive
declare
@@ -288,23 +297,24 @@ schematic_goal ap_func_pathcomp:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z.
- ap B f x z (pathcomp A x y z p q) =[f`x =[B] f`z]
- pathcomp B (f`x) (f`y) (f`z) (ap B f x y p) (ap B f y z q)"
+ ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z]
+ pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)"
apply (quantify 3)
apply (path_ind "{x, y, p}
\<Prod>z: A. \<Prod>q: y =[A] z.
- ap B f x z (pathcomp A x y z p q) =[f`x =[B] f`z]
- pathcomp B (f`x) (f`y) (f`z) (ap B f x y p) (ap B f y z q)")
+ ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z]
+ pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)")
apply (quantify 2)
apply (path_ind "{x, z, q}
- ap B f x z (pathcomp A x x z (refl x) q) =[f`x =[B] f`z]
- pathcomp B (f`x) (f`x) (f`z) (ap B f x x (refl x)) (ap B f x z q)")
+ ap[B, x, z] f (pathcomp[A, x, x, z] (refl x) q) =[f`x =[B] f`z]
+ pathcomp[B, f`x, f`x, f`z] (ap[B, x, x] f (refl x)) (ap[B, x, z] f q)")
proof -
show
- "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)): ap B f x x (pathcomp A x x x (refl x) (refl x)) =[f`x =[B] f`x]
- pathcomp B (f`x) (f`x) (f`x) (ap B f x x (refl x)) (ap B f x x (refl x))"
+ "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)) :
+ ap[B, x, x] f (pathcomp[A, x, x, x] (refl x) (refl x)) =[f`x =[B] f`x]
+ pathcomp[B, f`x, f`x, f`x] (ap[B, x, x] f (refl x)) (ap[B, x, x] f (refl x))"
by derive
-qed derive
+qed routine
schematic_goal ap_func_compose:
@@ -313,40 +323,39 @@ schematic_goal ap_func_compose:
"f: A \<rightarrow> B" "g: B \<rightarrow> C"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y.
- ap C g (f`x) (f`y) (ap B f x y p) =[g`(f`x) =[C] g`(f`y)]
- ap C (compose A g f) x y p"
+ ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)]
+ ap[C, x, y] (g o[A] f) p"
apply (quantify 3)
apply (path_ind "{x, y, p}
- ap C g (f`x) (f`y) (ap B f x y p) =[g`(f`x) =[C] g`(f`y)]
- ap C (compose A g f) x y p")
+ ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)]
+ ap[C, x, y] (g o[A] f) p")
proof -
show "\<And>x. x: A \<Longrightarrow> refl(refl (g`(f`x))) :
- ap C g (f`x) (f`x) (ap B f x x (refl x)) =[g`(f`x) =[C] g`(f`x)]
- ap C (compose A g f) x x (refl x)"
+ ap[C, f`x, f`x] g (ap[B, x, x] f (refl x)) =[g`(f`x) =[C] g`(f`x)]
+ ap[C, x, x] (g o[A] f) (refl x)"
unfolding compose_def by derive
fix x y p assume [intro]: "x: A" "y: A" "p: x =[A] y"
- show "ap C g (f`x) (f`y) (ap B f x y p) =[g`(f`x) =[C] g`(f`y)] ap C (compose A g f) x y p: U i"
+ show "ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] ap[C, x, y] (g o[A] f) p: U i"
proof
have
- "(\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y \<equiv> g`(f`x) =[C] g`(f`y)" by derive
- moreover have
- "ap C (compose A g f) x y p : (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y"
+ "ap[C, x, y] (g o[A] f) p: (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y"
unfolding compose_def by derive
+ moreover have
+ "(\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y \<equiv> g`(f`x) =[C] g`(f`y)" by derive
ultimately show
- "ap C (compose A g f) x y p : g`(f`x) =[C] g`(f`y)" by simp
+ "ap[C, x, y] (g o[A] f) p: g`(f`x) =[C] g`(f`y)" by simp
qed derive
qed routine
-
-
+declare[[pretty_inv=false, pretty_ap=false]]
schematic_goal ap_func_inv:
assumes [intro]:
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
- shows "?prf: ap B f y x (inv A x y p) =[f`y =[B] f`x] inv B (f`x) (f`y) (ap B f x y p)"
+ shows "?prf: ap[B, y, x] f (inv[A, x, y] p) =[f`y =[B] f`x] inv[B, f`x, f`y] (ap[B, x, y] f p)"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)):
- ap B f x x (inv A x x (refl x)) =[f`x =[B] f`x] inv B (f`x) (f`x) (ap B f x x (refl x))"
+ ap[B, x, x] f (inv[A, x, x] (refl x)) =[f`x =[B] f`x] inv[B, f`x, f`x] (ap[B, x, x] f (refl x))"
by derive
qed routine
@@ -355,14 +364,14 @@ schematic_goal ap_func_id:
shows "?prf: ap A (id A) x y p =[x =[A] y] p"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
- show "refl(refl x): ap A (id A) x x (refl x) =[x =[A] x] refl x" by derive
+ show "refl(refl x): ap[A, x, x] (id A) (refl x) =[x =[A] x] refl x" by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
- have "ap A (id A) x y p: (id A)`x =[A] (id A)`y" by derive
+ have "ap[A, x, y] (id A) p: (id A)`x =[A] (id A)`y" by derive
moreover have "(id A)`x =[A] (id A)`y \<equiv> x =[A] y" by derive
- ultimately have [intro]: "ap A (id A) x y p: x =[A] y" by simp
+ ultimately have [intro]: "ap[A, x, y] (id A) p: x =[A] y" by simp
- show "ap A (id A) x y p =[x =[A] y] p: U i" by derive
+ show "ap[A, x, y] (id A) p =[x =[A] y] p: U i" by derive
qed
@@ -374,15 +383,29 @@ schematic_goal transport:
"x: A" "y: A" "p: x =[A] y"
shows "?prf: P x \<rightarrow> P y"
proof (path_ind' x y p)
- show "\<And>x. x: A \<Longrightarrow> id (P x): P x \<rightarrow> P x" by derive
+ show "\<And>x. x: A \<Longrightarrow> id(P x): P x \<rightarrow> P x" by derive
qed routine
-definition transport :: "[t \<Rightarrow> t, t, t, t] \<Rightarrow> t"
-where "transport P x y p \<equiv> indEq (\<lambda>a b _. P a \<rightarrow> P b) (\<lambda>x. id (P x)) x y p"
+definition transport :: "[t \<Rightarrow> t, t, t, t] \<Rightarrow> t" ("(2transport[_, _, _] _)" [0, 0, 0, 1000])
+where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b _. P a \<rightarrow> P b) (\<lambda>x. id (P x)) x y p"
+
+syntax "_transport'" :: "[t, t] \<Rightarrow> t" ("(2_*)" [1000])
+
+ML \<open>val pretty_transport = Attrib.setup_config_bool @{binding "pretty_transport"} (K true)\<close>
+
+print_translation \<open>
+let fun transport_tr' ctxt [P, x, y, p] =
+ if Config.get ctxt pretty_transport
+ then Syntax.const @{syntax_const "_transport'"} $ p
+ else @{const transport} $ P $ x $ y $ p
+in
+ [(@{const_syntax transport}, transport_tr')]
+end
+\<close>
lemma transport_type:
assumes "A: U i" "P: A \<leadsto> U i" "x: A" "y: A" "p: x =[A] y"
- shows "transport P x y p: P x \<rightarrow> P y"
+ shows "transport[P, x, y] p: P x \<rightarrow> P y"
unfolding transport_def using assms by (rule transport)
lemma transport_comp:
diff --git a/Prod.thy b/Prod.thy
index d27c51e..48f0151 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -75,7 +75,12 @@ section \<open>Function composition\<close>
definition compose :: "[t, t, t] \<Rightarrow> t"
where "compose A g f \<equiv> \<lambda>x: A. g`(f`x)"
-syntax "_compose" :: "[t, t] \<Rightarrow> t" (infixr "o" 110)
+syntax "_compose" :: "[t, t, t] \<Rightarrow> t" ("(2_ o[_]/ _)" [111, 0, 110] 110)
+translations "g o[A] f" \<rightleftharpoons> "(CONST compose) A g f"
+
+text \<open>The composition @{term "g o[A] f"} is annotated with the domain @{term A} of @{term f}.\<close>
+
+syntax "_compose'" :: "[t, t] \<Rightarrow> t" (infixr "o" 110)
text \<open>Pretty-printing switch for composition; hides domain type information.\<close>
@@ -84,7 +89,7 @@ ML \<open>val pretty_compose = Attrib.setup_config_bool @{binding "pretty_compos
print_translation \<open>
let fun compose_tr' ctxt [A, g, f] =
if Config.get ctxt pretty_compose
- then Syntax.const @{syntax_const "_compose"} $ g $ f
+ then Syntax.const @{syntax_const "_compose'"} $ g $ f
else @{const compose} $ A $ g $ f
in
[(@{const_syntax compose}, compose_tr')]
@@ -93,12 +98,12 @@ end
lemma compose_assoc:
assumes "A: U i" and "f: A \<rightarrow> B" and "g: B \<rightarrow> C" and "h: \<Prod>x: C. D x"
- shows "compose A (compose B h g) f \<equiv> compose A h (compose A g f)"
+ shows "(h o[B] g) o[A] f \<equiv> h o[A] g o[A] f"
unfolding compose_def by (derive lems: assms cong)
lemma compose_comp:
assumes "A: U i" and "\<And>x. x: A \<Longrightarrow> b x: B" and "\<And>x. x: B \<Longrightarrow> c x: C x"
- shows "compose A (\<lambda>x: B. c x) (\<lambda>x: A. b x) \<equiv> \<lambda>x: A. c (b x)"
+ shows "(\<lambda>x: B. c x) o[A] (\<lambda>x: A. b x) \<equiv> \<lambda>x: A. c (b x)"
unfolding compose_def by (derive lems: assms cong)
declare compose_comp [comp]