aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Equal.thy29
-rw-r--r--HoTT_Base.thy76
-rw-r--r--Prod.thy56
-rw-r--r--Proj.thy30
-rw-r--r--Sum.thy39
5 files changed, 130 insertions, 100 deletions
diff --git a/Equal.thy b/Equal.thy
index 8c5cf29..2b49213 100644
--- a/Equal.thy
+++ b/Equal.thy
@@ -10,13 +10,12 @@ theory Equal
begin
+section \<open>Constants and syntax\<close>
+
axiomatization
Equal :: "[Term, Term, Term] \<Rightarrow> Term" and
refl :: "Term \<Rightarrow> Term" ("(refl'(_'))" 1000) and
- indEqual :: "[Term, [Term, Term] \<Rightarrow> Typefam, Term \<Rightarrow> Term, Term, Term, Term] \<Rightarrow> Term" ("(1indEqual[_])")
-
-
-section \<open>Syntax\<close>
+ indEqual :: "[Term, [Term, Term] \<Rightarrow> Typefam, Term \<Rightarrow> Term, Term, Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>=[_])")
syntax
"_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 0, 101] 100)
@@ -31,12 +30,6 @@ section \<open>Type rules\<close>
axiomatization where
Equal_form: "\<And>i A a b. \<lbrakk>A : U(i); a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U(i)"
and
- Equal_form_cond1: "\<And>i A a b. a =\<^sub>A b : U(i) \<Longrightarrow> A : U(i)"
-and
- Equal_form_cond2: "\<And>i A a b. a =\<^sub>A b : U(i) \<Longrightarrow> a : A"
-and
- Equal_form_cond3: "\<And>i A a b. a =\<^sub>A b : U(i) \<Longrightarrow> b : A"
-and
Equal_intro: "\<And>A a. a : A \<Longrightarrow> refl(a) : a =\<^sub>A a"
and
Equal_elim: "\<And>i A C f a b p. \<lbrakk>
@@ -45,17 +38,27 @@ and
a : A;
b : A;
p : a =\<^sub>A b
- \<rbrakk> \<Longrightarrow> indEqual[A] C f a b p : C a b p"
+ \<rbrakk> \<Longrightarrow> ind\<^sub>=[A] C f a b p : C a b p"
and
Equal_comp: "\<And>i A C f a. \<lbrakk>
\<And>x y. \<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U(i);
\<And>x. x : A \<Longrightarrow> f x : C x x refl(x);
a : A
- \<rbrakk> \<Longrightarrow> indEqual[A] C f a a refl(a) \<equiv> f a"
+ \<rbrakk> \<Longrightarrow> ind\<^sub>=[A] C f a a refl(a) \<equiv> f a"
+
+text "Admissible inference rules for equality type formation:"
+
+axiomatization where
+ Equal_form_cond1: "\<And>i A a b. a =\<^sub>A b : U(i) \<Longrightarrow> A : U(i)"
+and
+ Equal_form_cond2: "\<And>i A a b. a =\<^sub>A b : U(i) \<Longrightarrow> a : A"
+and
+ Equal_form_cond3: "\<And>i A a b. a =\<^sub>A b : U(i) \<Longrightarrow> b : A"
lemmas Equal_rules [intro] = Equal_form Equal_intro Equal_elim Equal_comp
-lemmas Equal_form_conds [elim, wellform] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3
+lemmas Equal_form_conds [intro] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3
lemmas Equal_comps [comp] = Equal_comp
+
end \ No newline at end of file
diff --git a/HoTT_Base.thy b/HoTT_Base.thy
index 8c45d35..cf71813 100644
--- a/HoTT_Base.thy
+++ b/HoTT_Base.thy
@@ -1,8 +1,8 @@
(* Title: HoTT/HoTT_Base.thy
Author: Josh Chen
- Date: Jun 2018
+ Date: Aug 2018
-Basic setup and definitions of a homotopy type theory object logic.
+Basic setup and definitions of a homotopy type theory object logic with a cumulative universe hierarchy à la Russell.
*)
theory HoTT_Base
@@ -12,71 +12,77 @@ begin
section \<open>Foundational definitions\<close>
-text "A single meta-type \<open>Term\<close> suffices to implement the object-logic types and terms."
+text "Meta syntactic type for object-logic types and terms."
typedecl Term
-section \<open>Named theorems\<close>
-
-text "Named theorems to be used by proof methods later (see HoTT_Methods.thy).
-
-\<open>wellform\<close> declares necessary wellformedness conditions for type and inhabitation judgments, while
-\<open>comp\<close> declares computation rules, which are used by the simplification method as equational rewrite rules."
-
-named_theorems wellform
-named_theorems comp
-
-
section \<open>Judgments\<close>
-text "Formalize the context and typing judgments \<open>a : A\<close>.
-
-For judgmental equality we use the existing Pure equality \<open>\<equiv>\<close> and hence do not need to define a separate judgment for it."
+text "
+ Formalize the typing judgment \<open>a : A\<close>.
+ For judgmental/definitional equality we use the existing Pure equality \<open>\<equiv>\<close> and hence do not need to define a separate judgment for it.
+"
consts
- is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(1_ : _)" [0, 0] 1000)
+ has_type :: "[Term, Term] \<Rightarrow> prop" ("(1_ : _)" [0, 0] 1000)
-section \<open>Universes\<close>
+section \<open>Universe hierarchy\<close>
-text "Strictly-ordered meta-level natural numbers to index the universes."
+text "Finite meta-ordinals to index the universes."
-typedecl Numeral
+typedecl Ord
axiomatization
- O :: Numeral ("0") and
- S :: "Numeral \<Rightarrow> Numeral" ("S_") and
- lt :: "[Numeral, Numeral] \<Rightarrow> prop" (infix "<-" 999)
+ O :: Ord and
+ S :: "Ord \<Rightarrow> Ord" ("S_" [0] 1000) and
+ lt :: "[Ord, Ord] \<Rightarrow> prop" (infix "<-" 999)
where
- Numeral_lt_min: "\<And>n. 0 <- S n"
+ Ord_lt_min: "\<And>n. O <- S n"
and
- Numeral_lt_trans: "\<And>m n. m <- n \<Longrightarrow> S m <- S n"
+ Ord_lt_trans: "\<And>m n. m <- n \<Longrightarrow> S m <- S n"
-lemmas Numeral_rules [intro] = Numeral_lt_min Numeral_lt_trans
+lemmas Ord_rules [intro] = Ord_lt_min Ord_lt_trans
\<comment> \<open>Enables \<open>standard\<close> to automatically solve inequalities.\<close>
-text "Universe types:"
+text "Define the universe types."
axiomatization
- U :: "Numeral \<Rightarrow> Term" ("U _")
+ U :: "Ord \<Rightarrow> Term"
where
- Universe_hierarchy: "\<And>i j. i <- j \<Longrightarrow> U(i) : U(j)"
+ U_hierarchy: "\<And>i j. i <- j \<Longrightarrow> U(i) : U(j)"
and
- Universe_cumulative: "\<And>A i j. \<lbrakk>A : U(i); i <- j\<rbrakk> \<Longrightarrow> A : U(j)"
- \<comment> \<open>WARNING: \<open>rule Universe_cumulative\<close> can result in an infinite rewrite loop!\<close>
+ U_cumulative: "\<And>A i j. \<lbrakk>A : U(i); i <- j\<rbrakk> \<Longrightarrow> A : U(j)"
+ \<comment> \<open>WARNING: \<open>rule Universe_cumulative\<close> can result in an infinite rewrite loop!\<close>
section \<open>Type families\<close>
-text "We define the following abbreviation constraining the output type of a meta lambda expression when given input of certain type."
+text "
+ The following abbreviation constrains the output type of a meta lambda expression when given input of certain type.
+"
-abbreviation (input) constrained :: "[Term \<Rightarrow> Term, Term, Term] \<Rightarrow> prop" ("_: _ \<longrightarrow> _")
+abbreviation (input) constrained :: "[Term \<Rightarrow> Term, Term, Term] \<Rightarrow> prop" ("(1_: _ \<longrightarrow> _)")
where "f: A \<longrightarrow> B \<equiv> (\<And>x. x : A \<Longrightarrow> f x : B)"
-text "The above is used to define type families, which are just constrained meta-lambdas \<open>P: A \<longrightarrow> B\<close> where \<open>A\<close> and \<open>B\<close> are elements of some universe type."
+text "
+ The above is used to define type families, which are constrained meta-lambdas \<open>P: A \<longrightarrow> B\<close> where \<open>A\<close> and \<open>B\<close> are small types.
+"
type_synonym Typefam = "Term \<Rightarrow> Term"
+section \<open>Named theorems\<close>
+
+text "
+ Named theorems to be used by proof methods later (see HoTT_Methods.thy).
+
+ \<open>wellform\<close> declares necessary wellformedness conditions for type and inhabitation judgments, while \<open>comp\<close> declares computation rules, which are used by the simplification method as equational rewrite rules.
+"
+
+named_theorems wellform
+named_theorems comp
+
+
end \ No newline at end of file
diff --git a/Prod.thy b/Prod.thy
index fbea4df..8fa73f3 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -1,8 +1,8 @@
(* Title: HoTT/Prod.thy
Author: Josh Chen
- Date: Jun 2018
+ Date: Aug 2018
-Dependent product (function) type for the HoTT logic.
+Dependent product (function) type.
*)
theory Prod
@@ -10,14 +10,13 @@ theory Prod
begin
+section \<open>Constants and syntax\<close>
+
axiomatization
Prod :: "[Term, Typefam] \<Rightarrow> Term" and
lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and
- \<comment> \<open>Application binds tighter than abstraction.\<close>
appl :: "[Term, Term] \<Rightarrow> Term" (infixl "`" 60)
-
-
-section \<open>Syntax\<close>
+ \<comment> \<open>Application binds tighter than abstraction.\<close>
syntax
"_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30)
@@ -33,17 +32,18 @@ translations
"PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)"
"%%x:A. b" \<rightharpoonup> "CONST lambda A (\<lambda>x. b)"
+text "Nondependent functions are a special case."
+
+abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40)
+ where "A \<rightarrow> B \<equiv> \<Prod>_:A. B"
+
section \<open>Type rules\<close>
axiomatization where
Prod_form: "\<And>i A B. \<lbrakk>A : U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x : U(i)"
and
- Prod_form_cond1: "\<And>i A B. (\<Prod>x:A. B x : U(i)) \<Longrightarrow> A : U(i)"
-and
- Prod_form_cond2: "\<And>i A B. (\<Prod>x:A. B x : U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)"
-and
- Prod_intro: "\<And>i A B b. (\<And>x. x : A \<Longrightarrow> b x : B x) \<Longrightarrow> \<^bold>\<lambda>x:A. b x : \<Prod>x:A. B x"
+ Prod_intro: "\<And>i A B b. \<lbrakk>A : U(i); \<And>x. x : A \<Longrightarrow> b x : B x\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x:A. b x : \<Prod>x:A. B x"
and
Prod_elim: "\<And>A B f a. \<lbrakk>f : \<Prod>x:A. B x; a : A\<rbrakk> \<Longrightarrow> f`a : B a"
and
@@ -51,38 +51,42 @@ and
and
Prod_uniq: "\<And>A B f. f : \<Prod>x:A. B x \<Longrightarrow> \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
-text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)."
+text "
+ Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation).
+"
+
+text "
+ In addition to the usual type rules, it is a meta-theorem (*PROVE THIS!*) that whenever \<open>\<Prod>x:A. B x : U(i)\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A : U(i)\<close> and \<open>B: A \<longrightarrow> U(i)\<close>.
+
+ That is to say, the following inference rules are admissible, and it simplifies proofs greatly to axiomatize them directly.
+"
-text "In textbook presentations it is usual to present type formation as a forward implication, stating conditions sufficient for the formation of the type.
-It is however implicit that the premises of the rule are also necessary, so that for example the only way for one to have that \<open>\<Prod>x:A. B x : U\<close> is for \<open>A : U\<close> and \<open>B: A \<rightarrow> U\<close> in the first place.
-This is what the additional formation rules \<open>Prod_form_cond1\<close> and \<open>Prod_form_cond2\<close> express."
+axiomatization where
+ Prod_form_cond1: "\<And>i A B. (\<Prod>x:A. B x : U(i)) \<Longrightarrow> A : U(i)"
+and
+ Prod_form_cond2: "\<And>i A B. (\<Prod>x:A. B x : U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)"
-text "The type rules should be able to be used as introduction and elimination rules by the standard reasoner:"
+text "Set up the standard reasoner to use the type rules:"
lemmas Prod_rules [intro] = Prod_form Prod_intro Prod_elim Prod_comp Prod_uniq
-lemmas Prod_form_conds [elim, wellform] = Prod_form_cond1 Prod_form_cond2
+lemmas Prod_form_conds [intro (*elim, wellform*)] = Prod_form_cond1 Prod_form_cond2
lemmas Prod_comps [comp] = Prod_comp Prod_uniq
-text "Nondependent functions are a special case."
-
-abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40)
- where "A \<rightarrow> B \<equiv> \<Prod>_:A. B"
-
section \<open>Unit type\<close>
axiomatization
Unit :: Term ("\<one>") and
pt :: Term ("\<star>") and
- indUnit :: "[Typefam, Term, Term] \<Rightarrow> Term"
+ indUnit :: "[Typefam, Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<one>)")
where
- Unit_form: "\<one> : U(0)"
+ Unit_form: "\<one> : U(O)"
and
Unit_intro: "\<star> : \<one>"
and
- Unit_elim: "\<And>i C c a. \<lbrakk>C: \<one> \<longrightarrow> U(i); c : C \<star>; a : \<one>\<rbrakk> \<Longrightarrow> indUnit C c a : C a"
+ Unit_elim: "\<And>i C c a. \<lbrakk>C: \<one> \<longrightarrow> U(i); c : C \<star>; a : \<one>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> C c a : C a"
and
- Unit_comp: "\<And>i C c. \<lbrakk>C: \<one> \<longrightarrow> U(i); c : C \<star>\<rbrakk> \<Longrightarrow> indUnit C c \<star> \<equiv> c"
+ Unit_comp: "\<And>i C c. \<lbrakk>C: \<one> \<longrightarrow> U(i); c : C \<star>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> C c \<star> \<equiv> c"
lemmas Unit_rules [intro] = Unit_form Unit_intro Unit_elim Unit_comp
lemmas Unit_comps [comp] = Unit_comp
diff --git a/Proj.thy b/Proj.thy
index f878469..bcef939 100644
--- a/Proj.thy
+++ b/Proj.thy
@@ -25,10 +25,10 @@ overloading
fst_nondep \<equiv> fst
begin
definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
- "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
+ "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). ind\<^sub>\<Sum>[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
- "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
+ "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. ind\<^sub>\<Sum>[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
end
overloading
@@ -36,10 +36,10 @@ overloading
snd_nondep \<equiv> snd
begin
definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
- "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
+ "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). ind\<^sub>\<Sum>[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
- "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
+ "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. ind\<^sub>\<Sum>[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end
@@ -48,15 +48,29 @@ section \<open>Properties\<close>
text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
lemma fst_dep_type: assumes "\<Sum>x:A. B x : U(i)" and "p : \<Sum>x:A. B x" shows "fst[A,B]`p : A"
- unfolding fst_dep_def
- by (derive lems: assms)
+unfolding fst_dep_def
+proof
+ show "lambda (Sum A B) (ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x)) : (\<Sum>x:A. B x) \<rightarrow> A"
+ proof
+ show "Sum A B : U(i)" by (rule assms)
+ show "\<And>p. p : Sum A B \<Longrightarrow> ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) p : A"
+ proof
+ show "A : U(i)" using assms(1) ..
+ qed
+ qed
+qed (rule assms)
lemma fst_dep_comp:
assumes "A : U(i)" and "B: A \<longrightarrow> U(i)" and "a : A" and "b : B a"
shows "fst[A,B]`(a,b) \<equiv> a"
- unfolding fst_dep_def
- by (simplify lems: assms)
+unfolding fst_dep_def
+proof (subst comp)
+ show "\<And>x. x : Sum A B \<Longrightarrow> ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) x : A" by (standard, rule assms(1), assumption+)
+ show "(a,b) : Sum A B" using assms(2-4) ..
+ show "ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) (a, b) \<equiv> a"
+ proof
+ oops
\<comment> \<open> (* Old proof *)
proof -
diff --git a/Sum.thy b/Sum.thy
index 99b4df2..80f8a9c 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -10,13 +10,12 @@ theory Sum
begin
+section \<open>Constants and syntax\<close>
+
axiomatization
Sum :: "[Term, Typefam] \<Rightarrow> Term" and
pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and
- indSum :: "[Term, Typefam, Typefam, [Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1indSum[_,/ _])")
-
-
-section \<open>Syntax\<close>
+ indSum :: "[Term, Typefam, Typefam, [Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<Sum>[_,/ _])")
syntax
"_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20)
@@ -26,49 +25,53 @@ translations
"\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
"SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)"
+text "Nondependent pair."
+
+abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
+ where "A \<times> B \<equiv> \<Sum>_:A. B"
+
section \<open>Type rules\<close>
axiomatization where
Sum_form: "\<And>i A B. \<lbrakk>A : U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x : U(i)"
and
- Sum_form_cond1: "\<And>i A B. (\<Sum>x:A. B x : U(i)) \<Longrightarrow> A : U(i)"
-and
- Sum_form_cond2: "\<And>i A B. (\<Sum>x:A. B x : U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)"
-and
Sum_intro: "\<And>i A B a b. \<lbrakk>B: A \<longrightarrow> U(i); a : A; b : B a\<rbrakk> \<Longrightarrow> (a,b) : \<Sum>x:A. B x"
and
Sum_elim: "\<And>i A B C f p. \<lbrakk>
C: \<Sum>x:A. B x \<longrightarrow> U(i);
\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> f x y : C (x,y);
p : \<Sum>x:A. B x
- \<rbrakk> \<Longrightarrow> indSum[A,B] C f p : C p"
+ \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>[A,B] C f p : C p"
and
Sum_comp: "\<And>i A B C f a b. \<lbrakk>
C: \<Sum>x:A. B x \<longrightarrow> U(i);
\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> f x y : C (x,y);
a : A;
b : B a
- \<rbrakk> \<Longrightarrow> indSum[A,B] C f (a,b) \<equiv> f a b"
+ \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum>[A,B] C f (a,b) \<equiv> f a b"
+
+text "Admissible inference rules for sum formation:"
+
+axiomatization where
+ Sum_form_cond1: "\<And>i A B. (\<Sum>x:A. B x : U(i)) \<Longrightarrow> A : U(i)"
+and
+ Sum_form_cond2: "\<And>i A B. (\<Sum>x:A. B x : U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)"
lemmas Sum_rules [intro] = Sum_form Sum_intro Sum_elim Sum_comp
-lemmas Sum_form_conds [elim, wellform] = Sum_form_cond1 Sum_form_cond2
+lemmas Sum_form_conds [intro (*elim, wellform*)] = Sum_form_cond1 Sum_form_cond2
lemmas Sum_comps [comp] = Sum_comp
-text "Nondependent pair."
-abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
- where "A \<times> B \<equiv> \<Sum>_:A. B"
-
section \<open>Null type\<close>
axiomatization
Null :: Term ("\<zero>") and
- indNull :: "[Typefam, Term] \<Rightarrow> Term"
+ indNull :: "[Typefam, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<zero>)")
where
- Null_form: "\<zero> : U(0)"
+ Null_form: "\<zero> : U(O)"
and
- Null_elim: "\<And>i C z. \<lbrakk>C: \<zero> \<longrightarrow> U(i); z : \<zero>\<rbrakk> \<Longrightarrow> indNull C z : C z"
+ Null_elim: "\<And>i C z. \<lbrakk>C: \<zero> \<longrightarrow> U(i); z : \<zero>\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero> C z : C z"
lemmas Null_rules [intro] = Null_form Null_elim