aboutsummaryrefslogtreecommitdiff
path: root/spartan
diff options
context:
space:
mode:
authorJosh Chen2020-05-25 18:50:59 +0200
committerJosh Chen2020-05-25 18:50:59 +0200
commit60f32406e8c9712c0689d54a3dd4f8e17d310d52 (patch)
tree11fe176eb187a2f146060af1584005506f220c9d /spartan
parent80edbd08e13200d2c080ac281d19948bbbcd92e0 (diff)
Lists + more reorganizing
Diffstat (limited to '')
-rw-r--r--spartan/core/Spartan.thy9
-rw-r--r--spartan/data/List.thy79
2 files changed, 86 insertions, 2 deletions
diff --git a/spartan/core/Spartan.thy b/spartan/core/Spartan.thy
index b4f7772..50002a6 100644
--- a/spartan/core/Spartan.thy
+++ b/spartan/core/Spartan.thy
@@ -18,6 +18,11 @@ section \<open>Preamble\<close>
declare [[eta_contract=false]]
+syntax "_dollar" :: \<open>logic \<Rightarrow> logic \<Rightarrow> logic\<close> (infixr "$" 3)
+translations "a $ b" \<rightharpoonup> "a (b)"
+
+abbreviation (input) K where "K x \<equiv> \<lambda>_. x"
+
section \<open>Metatype setup\<close>
@@ -118,8 +123,8 @@ axiomatization where
p: \<Sum>x: A. B x;
A: U i;
\<And>x. x : A \<Longrightarrow> B x: U i;
- \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>
+ \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>;
+ \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i
\<rbrakk> \<Longrightarrow> SigInd A (\<lambda>x. B x) (\<lambda>p. C p) f p: C p" and
Sig_comp: "\<lbrakk>
diff --git a/spartan/data/List.thy b/spartan/data/List.thy
index 71a879b..323ef7e 100644
--- a/spartan/data/List.thy
+++ b/spartan/data/List.thy
@@ -3,4 +3,83 @@ imports Spartan
begin
+(*TODO: Inductive type and recursive function definitions. The ad-hoc
+ axiomatization below should be subsumed once general inductive types are
+ properly implemented.*)
+
+axiomatization
+ List :: \<open>o \<Rightarrow> o\<close> and
+ nil :: \<open>o \<Rightarrow> o\<close> and
+ cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
+ ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
+where
+ ListF: "A: U i \<Longrightarrow> List A: U i" and
+
+ List_nil: "A: U i \<Longrightarrow> nil A: List A" and
+
+ List_cons: "\<lbrakk>x: A; l: List A\<rbrakk> \<Longrightarrow> cons A x l: List A" and
+
+ ListE: "\<lbrakk>
+ xs: List A;
+ c\<^sub>0: C (nil A);
+ \<And>x xs c. \<lbrakk>x: A; xs: List A; c: C xs\<rbrakk> \<Longrightarrow> f x xs c: C (cons A x xs);
+ \<And>xs. xs: List A \<Longrightarrow> C xs: U i
+ \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs c. f x xs c) xs: C xs" and
+
+ List_comp_nil: "\<lbrakk>
+ c\<^sub>0: C (nil A);
+ \<And>x xs c. \<lbrakk>x: A; xs: List A; c: C xs\<rbrakk> \<Longrightarrow> f x xs c: C (cons A x xs);
+ \<And>xs. xs: List A \<Longrightarrow> C xs: U i
+ \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs c. f x xs c) (nil A) \<equiv> c\<^sub>0" and
+
+ List_comp_cons: "\<lbrakk>
+ xs: List A;
+ c\<^sub>0: C (nil A);
+ \<And>x xs c. \<lbrakk>x: A; xs: List A; c: C xs\<rbrakk> \<Longrightarrow> f x xs c: C (cons A x xs);
+ \<And>xs. xs: List A \<Longrightarrow> C xs: U i
+ \<rbrakk> \<Longrightarrow>
+ ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs c. f x xs c) (cons A x xs) \<equiv>
+ f x xs (ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs c. f x xs c) xs)"
+
+lemmas
+ [intros] = ListF List_nil List_cons and
+ [elims "?xs"] = ListE and
+ [comps] = List_comp_nil List_comp_cons
+
+abbreviation "ListRec A C \<equiv> ListInd A (K C)"
+
+
+section \<open>Implicit notation\<close>
+
+definition nil_i ("[]")
+ where [implicit]: "[] \<equiv> nil ?"
+
+definition cons_i (infixr "#" 50)
+ where [implicit]: "x # l \<equiv> cons ? x l"
+
+
+section \<open>Standard functions\<close>
+
+definition "tail A \<equiv> \<lambda>xs: List A. ListRec A (List A) (nil A) (\<lambda>x xs _. xs) xs"
+
+definition "map A B \<equiv> \<lambda>f: A \<rightarrow> B. \<lambda>xs: List A.
+ ListRec A (List B) (nil B) (\<lambda>x _ c. cons B (f `x) c) xs"
+
+definition tail_i ("tail")
+ where [implicit]: "tail xs \<equiv> List.tail ? xs"
+
+definition map_i ("map")
+ where [implicit]: "map \<equiv> List.map ? ?"
+
+Lemma tail_type [typechk]:
+ assumes "A: U i" "xs: List A"
+ shows "tail xs: List A"
+ unfolding tail_def by typechk
+
+Lemma map_type [typechk]:
+ assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
+ shows "map f xs: List B"
+ unfolding map_def by typechk
+
+
end