aboutsummaryrefslogtreecommitdiff
path: root/hott
diff options
context:
space:
mode:
authorJosh Chen2020-08-02 16:44:47 +0200
committerJosh Chen2020-08-02 16:44:47 +0200
commit70fd3f72ef8f9cc01a071250d94e8c25ecb04c1d (patch)
tree31d6ff3eeda51264d29ec00af8b8f6ef3d69a8f7 /hott
parent77aa10763429d2ded040071fbf7bee331dd52f5e (diff)
rename some theorems
Diffstat (limited to '')
-rw-r--r--hott/Equivalence.thy18
1 files changed, 9 insertions, 9 deletions
diff --git a/hott/Equivalence.thy b/hott/Equivalence.thy
index 619ed84..b29a213 100644
--- a/hott/Equivalence.thy
+++ b/hott/Equivalence.thy
@@ -283,14 +283,14 @@ Lemma is_biinv_components [type]:
using assms unfolding is_biinv_def
by typechk+
-Lemma (def) is_qinv_imp_is_biinv:
+Lemma (def) is_biinv_if_is_qinv:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "is_qinv f \<rightarrow> is_biinv f"
apply intros
unfolding is_qinv_def is_biinv_def
by (rule distribute_Sig)
-Lemma (def) is_biinv_imp_is_qinv:
+Lemma (def) is_qinv_if_is_biinv:
assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "is_biinv f \<rightarrow> is_qinv f"
apply intro
@@ -326,7 +326,7 @@ Lemma (def) is_biinv_imp_is_qinv:
Lemma (def) id_is_biinv:
"A: U i \<Longrightarrow> is_biinv (id A)"
- by (rule is_qinv_imp_is_biinv) (rule id_is_qinv)
+ by (rule is_biinv_if_is_qinv) (rule id_is_qinv)
Lemma (def) funcomp_is_biinv:
assumes
@@ -335,8 +335,8 @@ Lemma (def) funcomp_is_biinv:
shows "is_biinv f \<rightarrow> is_biinv g \<rightarrow> is_biinv (g \<circ> f)"
apply intros
focus vars pf pg
- by (rule is_qinv_imp_is_biinv)
- (rule funcomp_is_qinv; rule is_biinv_imp_is_qinv, fact)
+ by (rule is_biinv_if_is_qinv)
+ (rule funcomp_is_qinv; rule is_qinv_if_is_biinv, fact)
done
@@ -360,7 +360,7 @@ Lemma (def) equivalence_refl:
shows "A \<simeq> A"
unfolding equivalence_def
proof intro
- show "is_biinv (id A)" by (rule is_qinv_imp_is_biinv) (rule id_is_qinv)
+ show "is_biinv (id A)" by (rule is_biinv_if_is_qinv) (rule id_is_qinv)
qed typechk
text \<open>
@@ -374,10 +374,10 @@ Lemma (def) equivalence_symmetric:
apply intros
unfolding equivalence_def
apply elim
- apply (dest (4) is_biinv_imp_is_qinv)
+ apply (dest (4) is_qinv_if_is_biinv)
apply intro
\<^item> by (rule qinv_of_is_qinv) facts
- \<^item> by (rule is_qinv_imp_is_biinv) (rule qinv_is_qinv)
+ \<^item> by (rule is_biinv_if_is_qinv) (rule qinv_is_qinv)
done
Lemma (def) equivalence_transitive:
@@ -412,7 +412,7 @@ text \<open>
(2) we don't yet have universe automation.
\<close>
-Lemma (def) id_imp_equiv:
+Lemma (def) equiv_if_equal:
assumes
"A: U i" "B: U i" "p: A =\<^bsub>U i\<^esub> B"
shows "<trans (id (U i)) p, ?isequiv>: A \<simeq> B"