diff options
| author | Josh Chen | 2020-07-31 18:10:10 +0200 | 
|---|---|---|
| committer | Josh Chen | 2020-07-31 18:10:10 +0200 | 
| commit | 77aa10763429d2ded040071fbf7bee331dd52f5e (patch) | |
| tree | 266abca73311031798c3936c1e44827bda292f25 /hott/Equivalence.thy | |
| parent | ff5454812f9e2720bd90c3a5437505644f63b487 (diff) | |
(REF) Tweak attribute names in preparation for new logical introduction rule behavior
Diffstat (limited to '')
| -rw-r--r-- | hott/Equivalence.thy | 32 | 
1 files changed, 16 insertions, 16 deletions
diff --git a/hott/Equivalence.thy b/hott/Equivalence.thy index 66c64f6..619ed84 100644 --- a/hott/Equivalence.thy +++ b/hott/Equivalence.thy @@ -12,7 +12,7 @@ definition homotopy_i (infix "~" 100)  translations "f ~ g" \<leftharpoondown> "CONST homotopy A B f g" -Lemma homotopy_type [typechk]: +Lemma homotopy_type [type]:    assumes      "A: U i"      "\<And>x. x: A \<Longrightarrow> B x: U i" @@ -161,7 +161,7 @@ subsection \<open>Quasi-inverses\<close>  definition "is_qinv A B f \<equiv> \<Sum>g: B \<rightarrow> A.    homotopy A (fn _. A) (g \<circ>\<^bsub>A\<^esub> f) (id A) \<times> homotopy B (fn _. B) (f \<circ>\<^bsub>B\<^esub> g) (id B)" -lemma is_qinv_type [typechk]: +lemma is_qinv_type [type]:    assumes "A: U i" "B: U i" "f: A \<rightarrow> B"    shows "is_qinv A B f: U i"    unfolding is_qinv_def @@ -193,12 +193,12 @@ Lemma is_qinvI:      show "g \<circ> f ~ id A \<and> f \<circ> g ~ id B" by (intro; fact)    qed -Lemma is_qinv_components [typechk]: +Lemma is_qinv_components [type]:    assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "pf: is_qinv f"    shows -    fst_of_is_qinv: "fst pf: B \<rightarrow> A" and -    p\<^sub>2\<^sub>1_of_is_qinv: "p\<^sub>2\<^sub>1 pf: fst pf \<circ> f ~ id A" and -    p\<^sub>2\<^sub>2_of_is_qinv: "p\<^sub>2\<^sub>2 pf: f \<circ> fst pf ~ id B" +    qinv_of_is_qinv: "fst pf: B \<rightarrow> A" and +    ret_of_is_qinv: "p\<^sub>2\<^sub>1 pf: fst pf \<circ> f ~ id A" and +    sec_of_is_qinv: "p\<^sub>2\<^sub>2 pf: f \<circ> fst pf ~ id B"    using assms unfolding is_qinv_def    by typechk+ @@ -211,8 +211,8 @@ using [[debug_typechk]]    back \<comment> \<open>Typechecking/inference goes too far here. Problem would likely be      solved with definitional unfolding\<close>    \<^item> by (fact \<open>f:_\<close>) -  \<^item> by (rule p\<^sub>2\<^sub>2_of_is_qinv) -  \<^item> by (rule p\<^sub>2\<^sub>1_of_is_qinv) +  \<^item> by (rule sec_of_is_qinv) +  \<^item> by (rule ret_of_is_qinv)    done  Lemma (def) funcomp_is_qinv: @@ -251,7 +251,7 @@ definition "is_biinv A B f \<equiv>    (\<Sum>g: B \<rightarrow> A. homotopy A (fn _. A) (g \<circ>\<^bsub>A\<^esub> f) (id A))      \<times> (\<Sum>g: B \<rightarrow> A. homotopy B (fn _. B) (f \<circ>\<^bsub>B\<^esub> g) (id B))" -lemma is_biinv_type [typechk]: +lemma is_biinv_type [type]:    assumes "A: U i" "B: U i" "f: A \<rightarrow> B"    shows "is_biinv A B f: U i"    unfolding is_biinv_def by typechk @@ -273,13 +273,13 @@ Lemma is_biinvI:      show "<h, H2>: {}" by typechk    qed -Lemma is_biinv_components [typechk]: +Lemma is_biinv_components [type]:    assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "pf: is_biinv f"    shows -    p\<^sub>1\<^sub>1_of_is_biinv: "p\<^sub>1\<^sub>1 pf: B \<rightarrow> A" and -    p\<^sub>2\<^sub>1_of_is_biinv: "p\<^sub>2\<^sub>1 pf: B \<rightarrow> A" and -    p\<^sub>1\<^sub>2_of_is_biinv: "p\<^sub>1\<^sub>2 pf: p\<^sub>1\<^sub>1 pf \<circ> f ~ id A" and -    p\<^sub>2\<^sub>2_of_is_biinv: "p\<^sub>2\<^sub>2 pf: f \<circ> p\<^sub>2\<^sub>1 pf ~ id B" +    section_of_is_biinv: "p\<^sub>1\<^sub>1 pf: B \<rightarrow> A" and +    retraction_of_is_biinv: "p\<^sub>2\<^sub>1 pf: B \<rightarrow> A" and +    ret_of_is_biinv: "p\<^sub>1\<^sub>2 pf: p\<^sub>1\<^sub>1 pf \<circ> f ~ id A" and +    sec_of_is_biinv: "p\<^sub>2\<^sub>2 pf: f \<circ> p\<^sub>2\<^sub>1 pf ~ id B"    using assms unfolding is_biinv_def    by typechk+ @@ -350,7 +350,7 @@ text \<open>  definition equivalence (infix "\<simeq>" 110)    where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. Equivalence.is_biinv A B f" -lemma equivalence_type [typechk]: +lemma equivalence_type [type]:    assumes "A: U i" "B: U i"    shows "A \<simeq> B: U i"    unfolding equivalence_def by typechk @@ -376,7 +376,7 @@ Lemma (def) equivalence_symmetric:    apply elim    apply (dest (4) is_biinv_imp_is_qinv)    apply intro -    \<^item> by (rule fst_of_is_qinv) facts +    \<^item> by (rule qinv_of_is_qinv) facts      \<^item> by (rule is_qinv_imp_is_biinv) (rule qinv_is_qinv)    done  | 
