aboutsummaryrefslogtreecommitdiff
path: root/Prod.thy
diff options
context:
space:
mode:
authorJosh Chen2018-09-11 08:59:16 +0200
committerJosh Chen2018-09-11 08:59:16 +0200
commit9b17aac85aa650a7a9d6463d3d01f1eb228d4572 (patch)
tree48fd7cf1d921067e276f2d981ec20f133693baaa /Prod.thy
parentbed5d559b62cf3f3acb75b28c2e192e274f46cc1 (diff)
Go back to higher-order application notation
Diffstat (limited to '')
-rw-r--r--Prod.thy22
1 files changed, 11 insertions, 11 deletions
diff --git a/Prod.thy b/Prod.thy
index b0408b9..35d6b07 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -36,17 +36,17 @@ abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarro
section \<open>Type rules\<close>
axiomatization where
- Prod_form: "\<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x): U(i)"
+ Prod_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x: U i"
and
- Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x): B(x); A: U(i)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x): \<Prod>x:A. B(x)"
+ Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x: \<Prod>x:A. B x"
and
- Prod_elim: "\<lbrakk>f: \<Prod>x:A. B(x); a: A\<rbrakk> \<Longrightarrow> f`a: B(a)"
+ Prod_elim: "\<lbrakk>f: \<Prod>x:A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a"
and
- Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x): B(x); a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x))`a \<equiv> b(a)"
+ Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b x)`a \<equiv> b a"
and
- Prod_uniq: "f : \<Prod>x:A. B(x) \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f"
+ Prod_uniq: "f : \<Prod>x:A. B x \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f"
and
- Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x) \<equiv> b'(x); A: U(i)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) \<equiv> \<^bold>\<lambda>x. b'(x)"
+ Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x \<equiv> \<^bold>\<lambda>x. c x"
text "
The Pure rules for \<open>\<equiv>\<close> only let us judge strict syntactic equality of object lambda expressions; Prod_eq is the actual definitional equality rule.
@@ -55,15 +55,15 @@ text "
"
text "
- In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U(i)\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U(i)\<close> and \<open>B: A \<longrightarrow> U(i)\<close>.
+ In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U i\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U i\<close> and \<open>B: A \<longrightarrow> U i\<close>.
That is to say, the following inference rules are admissible, and it simplifies proofs greatly to axiomatize them directly.
"
axiomatization where
- Prod_wellform1: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)"
+ Prod_wellform1: "(\<Prod>x:A. B x: U i) \<Longrightarrow> A: U i"
and
- Prod_wellform2: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)"
+ Prod_wellform2: "(\<Prod>x:A. B x: U i) \<Longrightarrow> B: A \<longrightarrow> U i"
text "Rule attribute declarations---set up various methods to use the type rules."
@@ -75,9 +75,9 @@ lemmas Prod_routine [intro] = Prod_form Prod_intro Prod_elim
section \<open>Function composition\<close>
-definition compose :: "[Term, Term] \<Rightarrow> Term" (infixr "o" 70) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)"
+definition compose :: "[Term, Term] \<Rightarrow> Term" (infixr "o" 110) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)"
-syntax "_COMPOSE" :: "[Term, Term] \<Rightarrow> Term" (infixr "\<circ>" 70)
+syntax "_COMPOSE" :: "[Term, Term] \<Rightarrow> Term" (infixr "\<circ>" 110)
translations "g \<circ> f" \<rightleftharpoons> "g o f"