aboutsummaryrefslogtreecommitdiff
path: root/HoTT_Theorems.thy
diff options
context:
space:
mode:
authorJosh Chen2018-05-28 15:53:07 +0200
committerJosh Chen2018-05-28 15:53:07 +0200
commit120879c099a2fb71e67a41a1c852c5db65e9eb4f (patch)
tree896cb5839cab9926bac4f14b82809356c2ee2b07 /HoTT_Theorems.thy
parent9ea0e76f92383ab14859cd5857f5a3ef1acec2c0 (diff)
Dependent product rules done and proofs of typing properties so far work. Starting on dependent sums.
Diffstat (limited to '')
-rw-r--r--HoTT_Theorems.thy93
1 files changed, 56 insertions, 37 deletions
diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy
index bea3dfe..33b0957 100644
--- a/HoTT_Theorems.thy
+++ b/HoTT_Theorems.thy
@@ -2,63 +2,82 @@ theory HoTT_Theorems
imports HoTT
begin
-text "A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified."
+text "A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
-section \<open>Foundational stuff\<close>
+Things that *should* be automated:
+ \<bullet> Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>.
+"
-theorem "\<lbrakk>A : U; A \<equiv> B\<rbrakk> \<Longrightarrow> B : U" by simp
+\<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close>
+declare[[unify_trace_simp, unify_trace_types, simp_trace]]
section \<open>Functions\<close>
-lemma "A : U \<Longrightarrow> \<^bold>\<lambda>x. x : A\<rightarrow>A"
- by (rule Prod_intro)
+text "Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following."
+
+lemma id_function: "A : U \<Longrightarrow> \<^bold>\<lambda>x. x : A\<rightarrow>A" ..
+
+text "Here is the same result, stated and proved differently.
+The standard method invoked after the keyword \<open>proof\<close> is applied to the goal \<open>\<^bold>\<lambda>x. x: A\<rightarrow>A\<close>, and so we need to show the prover how to continue, as opposed to the previous lemma."
+
+lemma
+ assumes "A : U"
+ shows "\<^bold>\<lambda>x. x : A\<rightarrow>A"
+proof
+ show "A : U" using assms .
+ show "\<lambda>x. A : A \<rightarrow> U" using assms ..
+qed
text "Note that there is no provision for declaring the type of bound variables outside of the scope of a lambda expression.
-Hence a statement like \<open>x : A\<close> is not needed (nor possible!) in the premises of the following lemma."
+More generally, we cannot write an assumption stating 'Let \<open>x\<close> be a variable of type \<open>A\<close>'."
-lemma "\<lbrakk>A : U; A \<equiv> B\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. x : B\<rightarrow>A"
+proposition "\<lbrakk>A : U; A \<equiv> B\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. x : B\<rightarrow>A"
proof -
assume
- 0: "A : U" and
- 1: "A \<equiv> B"
- from 0 have 2: "\<^bold>\<lambda>x. x : A\<rightarrow>A" by (rule Prod_intro)
- from 1 have 3: "A\<rightarrow>A \<equiv> B\<rightarrow>A" by simp
- from 3 and 2 show "\<^bold>\<lambda>x. x : B\<rightarrow>A" by (rule equal_types)
- qed
-
-lemma "\<lbrakk>A : U; B : U; x : A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>y. x : B\<rightarrow>A"
-proof -
-assume
- 1: "A : U" and
- 2: "B : U" and
- 3: "x : A"
-then show "\<^bold>\<lambda>y. x : B\<rightarrow>A"
-proof -
-from 3 have "\<^bold>\<lambda>y. x : B\<rightarrow>A" by (rule Prod_intro)
+ 1: "A : U" and
+ 2: "A \<equiv> B"
+ from id_function[OF 1] have 3: "\<^bold>\<lambda>x. x : A\<rightarrow>A" .
+ from 2 have "A\<rightarrow>A \<equiv> B\<rightarrow>A" by simp
+ with 3 show "\<^bold>\<lambda>x. x : B\<rightarrow>A" ..
qed
+
+text "It is instructive to try to prove \<open>\<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. \<^bold>\<lambda>y. x : A\<rightarrow>B\<rightarrow>A\<close>.
+First we prove an intermediate step."
+
+lemma constant_function: "\<lbrakk>A : U; B : U; x : A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>y. x : B\<rightarrow>A" ..
+
+text "And now the actual result:"
+
+proposition
+ assumes 1: "A : U" and 2: "B : U"
+ shows "\<^bold>\<lambda>x. \<^bold>\<lambda>y. x : A\<rightarrow>B\<rightarrow>A"
+proof
+ show "A : U" using assms(1) .
+ show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. x : B \<rightarrow> A" using assms by (rule constant_function)
+
+ from assms have "B \<rightarrow> A : U" by (rule Prod_formation)
+ then show "\<lambda>x. B \<rightarrow> A: A \<rightarrow> U" using assms(1) by (rule constant_type_family)
qed
-lemma "\<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. \<^bold>\<lambda>y. x : A\<rightarrow>B\<rightarrow>A"
-proof -
+text "Maybe a nicer way to write it:"
+
+proposition "\<lbrakk>A : U; B: U\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. \<^bold>\<lambda>y. x : A\<rightarrow>B\<rightarrow>A"
+proof
fix x
- assume
- "A : U" and
- "B : U" and
- "x : A"
- then have "\<^bold>\<lambda>y. x : B\<rightarrow>A" by (rule Prod_intro)
-
+ show "\<lbrakk>A : U; B : U; x : A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>y. x : B \<rightarrow> A" by (rule constant_function)
+ show "\<lbrakk>A : U; B : U\<rbrakk> \<Longrightarrow> B\<rightarrow>A : U" by (rule Prod_formation)
qed
section \<open>Nats\<close>
text "Here's a dumb proof that 2 is a natural number."
-lemma "succ(succ 0) : Nat"
-proof -
- have "0 : Nat" by (rule Nat_intro1)
- from this have "(succ 0) : Nat" by (rule Nat_intro2)
- thus "succ(succ 0) : Nat" by (rule Nat_intro2)
-qed
+proposition "succ(succ 0) : Nat"
+ proof -
+ have "0 : Nat" by (rule Nat_intro1)
+ from this have "(succ 0) : Nat" by (rule Nat_intro2)
+ thus "succ(succ 0) : Nat" by (rule Nat_intro2)
+ qed
text "We can of course iterate the above for as many applications of \<open>succ\<close> as we like.
The next thing to do is to implement induction to automate such proofs.