aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2019-02-23 01:42:18 +0100
committerJosh Chen2019-02-23 01:42:18 +0100
commitce2f78d04b78f7179729a1f5c792b1dc2ff3e1a8 (patch)
tree89f5d3fd4fcdaceeae7083b1926b123b83c11cd2
parent57d183c7955fb54b3eb6dd431f5aec338131266b (diff)
rewrite associativity proof
Diffstat (limited to '')
-rw-r--r--Eq.thy33
1 files changed, 16 insertions, 17 deletions
diff --git a/Eq.thy b/Eq.thy
index 7783682..e89aeea 100644
--- a/Eq.thy
+++ b/Eq.thy
@@ -18,7 +18,7 @@ axiomatization
indEq :: "[[t, t, t] \<Rightarrow> t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"
syntax
- "_Eq" :: "[t, t, t] \<Rightarrow> t" ("(3_ =[_]/ _)" [101, 0, 101] 100)
+ "_Eq" :: "[t, t, t] \<Rightarrow> t" ("(2_ =[_]/ _)" [101, 0, 101] 100)
translations
"a =[A] b" \<rightleftharpoons> "(CONST Eq) A a b"
@@ -191,14 +191,13 @@ In particular, changing the order causes unification to fail in the path inducti
It seems to be good practice to order the variables in the order over which we will path-induct.
\<close>
-declare[[pretty_pathcomp=false]]
-
schematic_goal pathcomp_assoc:
assumes "A: U i"
shows
"?a: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. \<Prod>w: A. \<Prod>r: z =[A] w.
pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w]
pathcomp A x z w (pathcomp A x y z p q) r"
+
apply (quantify 3)
apply (path_ind' "{x, y, p}
\<Prod>(z: A). \<Prod>(q: y =[A] z). \<Prod>(w: A). \<Prod>(r: z =[A] w).
@@ -213,20 +212,20 @@ schematic_goal pathcomp_assoc:
apply (path_ind' "{xb, w, r}
Eq.pathcomp A xb xb w (refl xb) (Eq.pathcomp A xb xb w (refl xb) r) =[xb =[A] w]
Eq.pathcomp A xb xb w (Eq.pathcomp A xb xb xb (refl xb) (refl xb)) r")
-
- text \<open>And now the rest is routine.\<close>
-
- apply (derive; (rule assms|assumption)?)
- apply (compute, rule assms, assumption)+
- apply (elim Eq_intro, rule Eq_intro, assumption)
- apply (compute, rule assms, assumption)+
- apply (elim Eq_intro)
- apply (compute, rule assms, assumption)+
- apply (rule Eq_intro, elim Eq_intro)
- apply (compute, rule assms, assumption)+
- apply (rule Eq_intro, elim Eq_intro)
- apply (derive lems: assms)
-done
+
+text \<open>The rest is now routine.\<close>
+
+proof
+ fix x assume *: "x: A"
+ show "pathcomp A x x x (refl x) (pathcomp A x x x (refl x) (refl x)): x =[A] x"
+ and "pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x): x =[A] x"
+ and "pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x): x =[A] x"
+ and "refl(refl x): pathcomp A x x x (refl x) (pathcomp A x x x (refl x) (refl x)) =[x =[A] x]
+ pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x)"
+ and "refl(refl x): pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x) =[x =[A] x]
+ pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x)"
+ by (derive lems: * assms)
+qed (derive lems: assms)
(* Possible todo:
implement a custom version of schematic_goal/theorem that exports the derived proof term.