aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2019-03-01 20:17:53 +0100
committerJosh Chen2019-03-01 20:17:53 +0100
commitc33f290df52e646edcf0589d98bd89da8ce288ec (patch)
tree61895d03d46b16a2eb2616415e881b658b782099
parent9ba47208278f7deea0dabed40a72fff89ecc5720 (diff)
Proving transport is bi-invertible is harder than expected
Diffstat (limited to '')
-rw-r--r--Univalence.thy170
1 files changed, 87 insertions, 83 deletions
diff --git a/Univalence.thy b/Univalence.thy
index 04e1d67..42e452e 100644
--- a/Univalence.thy
+++ b/Univalence.thy
@@ -69,35 +69,6 @@ corollary happly_type:
unfolding happly_def by (derive lems: fun_eq_imp_homotopic)
-section \<open>Transport and homotopy\<close>
-
-schematic_goal transport_invl_hom:
- assumes [intro]:
- "A: U i" "P: A \<rightarrow> U j"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf:
- (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) ~[w: P`x. P`x] id(P`x)"
-proof (rule happly_type[OF transport_invl])
- show "(transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p): P`x \<rightarrow> P`x"
- proof show "P`y: U j" by routine qed routine
-qed routine
-
-schematic_goal transport_invr_hom:
- assumes [intro]:
- "A: U i" "P: A \<rightarrow> U j"
- "x: A" "y: A" "p: x =[A] y"
- shows "?prf:
- (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) ~[w: P`y. P`y] id(P`y)"
-proof (rule happly_type[OF transport_invr])
- show "(transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)): P`y \<rightarrow> P`y"
- proof show "P`x: U j" by routine qed routine
-qed routine
-
-declare
- transport_invl_hom [intro]
- transport_invr_hom [intro]
-
-
section \<open>Equivalence\<close>
text \<open>For now, we define equivalence in terms of bi-invertibility.\<close>
@@ -139,73 +110,106 @@ unfolding equivalence_def proof (rule Sum_routine)
qed (routine add: id_is_biinv)
-section \<open>Univalence\<close>
+section \<open>Transport, homotopy, and bi-invertibility\<close>
-declare[[goals_limit=100, pretty_transport=true]]
+schematic_goal transport_invl_hom:
+ assumes [intro]:
+ "A: U i" "P: A \<rightarrow> U j"
+ "x: A" "y: A" "p: x =[A] y"
+ shows "?prf:
+ (transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) ~[w: P`x. P`x] id P`x"
+proof (rule happly_type[OF transport_invl])
+ show "(transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p): P`x \<rightarrow> P`x"
+ proof show "P`y: U j" by routine qed routine
+qed routine
-lemma lem: "\<And>A. A: U i \<Longrightarrow> (id (U i))`A \<equiv> A" by derive
+schematic_goal transport_invr_hom:
+ assumes [intro]:
+ "A: U i" "P: A \<rightarrow> U j"
+ "x: A" "y: A" "p: x =[A] y"
+ shows "?prf:
+ (transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) ~[w: P`y. P`y] id P`y"
+proof (rule happly_type[OF transport_invr])
+ show "(transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)): P`y \<rightarrow> P`y"
+ proof show "P`x: U j" by routine qed routine
+qed routine
-schematic_goal
- assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B"
- shows "?prf: biinv[A, B] (transport[id(U i), A, B] p)"
-apply (path_ind' A B p)
-apply (unfold biinv_def)
- show "?a : biinv[A, B] (transport[id(U i), A, B] p)"
+declare
+ transport_invl_hom [intro]
+ transport_invr_hom [intro]
+
+(*
+Next we derive a proof that the transport of an equality @{term p} is bi-invertible, with inverse given by the transport of the inverse @{text "~p"}.
+
+The proof is a challenge for current method automation, for two main reasons:
+1.
+*)
-oops
+declare[[pretty_transport=false, goals_limit=100]]
-schematic_goal
- assumes [intro]: "A: U i" "B: U i" "p: A =[U i] B"
- shows "?prf: biinv[id(U i)`A, id(U i)`B] (transport[id(U i), A, B] p)"
-unfolding biinv_def
+lemma id_expand: "\<And>A. A: U i \<Longrightarrow> A \<equiv> (id U i)`A" by derive
+lemma id_contract: "\<And>A. A: U i \<Longrightarrow> (id U i)`A \<equiv> A" by derive
+
+schematic_goal transport_biinv:
+ assumes [intro]: "p: A =[U i] B" "A: U i" "B: U i"
+ shows "?prf: biinv[A, B] (transport[id U i, A, B] p)"
+apply (subst (0 2) id_expand, unfold biinv_def, fact+)
+ \<comment> \<open>Need to rewrite the first instances of @{term A} and @{term B} in order to
+ use the proofs of @{thm transport_invl_hom} and @{thm transport_invr_hom} later.\<close>
apply (rule Sum_routine)
-prefer 2 apply (rule Sum_routine)
-prefer 3 apply (rule transport_invl_hom)
-prefer 9 apply (rule Sum_routine)
-prefer 3 apply (rule transport_invr_hom)
+prefer 2
+ apply (rule Sum_routine)
+ prefer 3 apply (rule transport_invl_hom)
+prefer 9
+ apply (rule Sum_routine)
+ prefer 3 apply (rule transport_invr_hom)
+\<comment> \<open>The remaining subgoals can now be handled relatively easily.\<close>
proof -
- show "U i: U (Suc i)" by hierarchy
- show "U i: U (Suc i)" by hierarchy
- show "\<And>g. g : id (U i)`B \<rightarrow> id (U i)`A \<Longrightarrow> (transport[id(U i), A, B] p) o[id (U i)`B] g ~[x: id (U i)`B. id (U i)`B] id (id (U i)`B) : U i"
- proof
- show "id (U i)`B : U i" by derive
- show "id (U i)`B : U i" by derive
- show "id (id (U i)`B) : id (U i)`B \<rightarrow> id (U i)`B" by derive
- show
- "\<And>g. g : id (U i)`B \<rightarrow> id (U i)`A \<Longrightarrow>
- (transport[id(U i), A, B] p) o[id (U i)`B] g: id (U i)`B \<rightarrow> id (U i)`B"
- apply rule
- prefer 4 apply assumption
- proof -
- show "id (U i)`B : U i" by derive
- show "id (U i)`A : U i" by derive
- show "id (U i)`B : U i" by derive
-
-oops
-
+ show *: "U i: U (Suc i)" by derive
+ show "U i: U (Suc i)" by fact
+
+ fix g assume [intro]: "g: (id U i)`B \<rightarrow> (id U i)`A"
+
+ have
+ "transport (id U i) A B p o[(id U i)`B] g: (id U i)`B \<rightarrow> (id U i)`B"
+ proof show "(id U i)`A: U i" by derive qed derive
+ moreover have
+ "transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
+ apply rule prefer 3 apply (fact, derive) done
+ then show
+ "(transport[id U i, A, B] p) o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
+ by routine
+
+ have
+ "g o[(id U i)`A] transport (id U i) A B p: (id U i)`A \<rightarrow> (id U i)`A"
+ proof show "(id U i)`B: U i" by derive qed derive
+ moreover have
+ "g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i"
+ apply rule prefer 3 apply (fact, derive) done
+ then show
+ "g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i"
+ by routine
+
+qed
+
+
+section \<open>Univalence\<close>
schematic_goal type_eq_imp_equiv:
assumes [intro]: "A: U i" "B: U i"
shows "?prf: (A =[U i] B) \<rightarrow> A \<simeq> B"
unfolding equivalence_def
apply (rule Prod_routine, rule Sum_routine)
-prefer 2
- show *: "\<And>f. f: A \<rightarrow> B \<Longrightarrow> isequiv[A, B] f: U i"
- unfolding isequiv_def by (derive lems: assms
-
- show "\<And>p. p: A =[U i] B \<Longrightarrow> transport p: A \<rightarrow> B"
- by (derive lems: assms transport_type[where ?i="Suc i"] \<comment> \<open>Instantiate @{thm transport_type} with a suitable universe level here...\<close>
-
- show "\<And>p. p: A =[U i] B \<Longrightarrow> ind\<^sub>= (\<lambda>_. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p: isequiv[A, B] (transport p)"
- proof (elim Equal_elim)
- show "\<And>T. T: U i \<Longrightarrow> <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[T, T] (transport (refl T))"
- by (derive lems: transport_comp[where ?i="Suc i" and ?A="U i"] id_isequiv)
- \<comment> \<open>...and also here.\<close>
-
- show "\<And>A B p. \<lbrakk>A: U i; B: U i; p: A =[U i] B\<rbrakk> \<Longrightarrow> isequiv[A, B] (transport p): U i"
- unfolding isequiv_def by (derive lems: assms transport_type
- qed fact+
-qed (derive lems: assms
+prefer 3 apply (derive lems: transport_biinv)
+proof -
+ fix p assume [intro]: "p: A =[U i] B"
+ have
+ "transport (id U i) A B p: (id U i)`A \<rightarrow> (id U i)`B"
+ proof show "U i: U(Suc i)" by hierarchy qed derive
+ moreover have [intro]:
+ "(id U i)`A \<rightarrow> (id U i)`B \<equiv> A \<rightarrow> B" by derive
+ ultimately show "transport (id U i) A B p: A \<rightarrow> B" by simp
+qed deriv
(*
section \<open>The univalence axiom\<close>