aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2019-02-11 22:44:21 +0100
committerJosh Chen2019-02-11 22:44:21 +0100
commit76b57317d7568f4dcd673b1b8085601c6c723355 (patch)
tree33cbdbbd56a4656bf9b29569ebddba715609bb8b
parenta5692e0ba36b372b9175d7b356f4b2fd1ee3d663 (diff)
Organize this commit as a backup of the work on type inference done so far; learnt that I probably need to take a different approach. In particular, should first make the constants completely monomorphic, and then work on full proper type inference, rather than the heuristic approach taken here.
Diffstat (limited to '')
-rw-r--r--Prod.thy24
-rw-r--r--Projections.thy46
-rw-r--r--Sum.thy51
3 files changed, 60 insertions, 61 deletions
diff --git a/Prod.thy b/Prod.thy
index 05eff43..4235793 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -18,13 +18,13 @@ axiomatization
\<comment> \<open>Application should bind tighter than abstraction.\<close>
syntax
- "_Prod" :: "[idt, t, t] \<Rightarrow> t" ("(3TT '(_: _')./ _)" 30)
- "_Prod'" :: "[idt, t, t] \<Rightarrow> t" ("(3TT _: _./ _)" 30)
+ "_Prod" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Prod>'(_: _')./ _)" 30)
+ "_Prod'" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Prod>_: _./ _)" 30)
"_lam" :: "[idt, t, t] \<Rightarrow> t" ("(3\<lambda>'(_: _')./ _)" 30)
"_lam'" :: "[idt, t, t] \<Rightarrow> t" ("(3\<lambda>_: _./ _)" 30)
translations
- "TT(x: A). B" \<rightleftharpoons> "(CONST Prod) A (\<lambda>x. B)"
- "TT x: A. B" \<rightleftharpoons> "(CONST Prod) A (\<lambda>x. B)"
+ "\<Prod>(x: A). B" \<rightleftharpoons> "(CONST Prod) A (\<lambda>x. B)"
+ "\<Prod>x: A. B" \<rightleftharpoons> "(CONST Prod) A (\<lambda>x. B)"
"\<lambda>(x: A). b" \<rightleftharpoons> "(CONST lam) A (\<lambda>x. b)"
"\<lambda>x: A. b" \<rightleftharpoons> "(CONST lam) A (\<lambda>x. b)"
@@ -35,25 +35,25 @@ The syntax translations above bind the variable @{term x} in the expressions @{t
text \<open>Non-dependent functions are a special case:\<close>
abbreviation Fun :: "[t, t] \<Rightarrow> t" (infixr "\<rightarrow>" 40)
-where "A \<rightarrow> B \<equiv> TT(_: A). B"
+where "A \<rightarrow> B \<equiv> \<Prod>(_: A). B"
axiomatization where
\<comment> \<open>Type rules\<close>
- Prod_form: "\<lbrakk>A: U i; B: A \<leadsto> U i\<rbrakk> \<Longrightarrow> TT x: A. B x: U i" and
+ Prod_form: "\<lbrakk>A: U i; B: A \<leadsto> U i\<rbrakk> \<Longrightarrow> \<Prod>x: A. B x: U i" and
- Prod_intro: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x: TT x: A. B x" and
+ Prod_intro: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x: \<Prod>x: A. B x" and
- Prod_elim: "\<lbrakk>f: TT x: A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a" and
+ Prod_elim: "\<lbrakk>f: \<Prod>x: A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a" and
Prod_cmp: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; a: A\<rbrakk> \<Longrightarrow> (\<lambda>x: A. b x)`a \<equiv> b a" and
- Prod_uniq: "f: TT x: A. B x \<Longrightarrow> \<lambda>x: A. f`x \<equiv> f" and
+ Prod_uniq: "f: \<Prod>x: A. B x \<Longrightarrow> \<lambda>x: A. f`x \<equiv> f" and
\<comment> \<open>Congruence rules\<close>
Prod_form_eq: "\<lbrakk>A: U i; B: A \<leadsto> U i; C: A \<leadsto> U i; \<And>x. x: A \<Longrightarrow> B x \<equiv> C x\<rbrakk>
- \<Longrightarrow> TT x: A. B x \<equiv> TT x: A. C x" and
+ \<Longrightarrow> \<Prod>x: A. B x \<equiv> \<Prod>x: A. C x" and
Prod_intro_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x \<equiv> \<lambda>x: A. c x"
@@ -107,14 +107,14 @@ print_translation \<open>
let fun compose_tr' ctxt [A, g, f] =
if Config.get ctxt pretty_compose
then Syntax.const @{syntax_const "_compose"} $ g $ f
- else Const ("compose", Syntax.read_typ ctxt "t \<Rightarrow> t \<Rightarrow> t") $ A $ g $ f
+ else @{const compose} $ A $ g $ f
in
[(@{const_syntax compose}, compose_tr')]
end
\<close>
lemma compose_assoc:
- assumes "A: U i" and "f: A \<rightarrow> B" and "g: B \<rightarrow> C" and "h: TT x: C. D x"
+ assumes "A: U i" and "f: A \<rightarrow> B" and "g: B \<rightarrow> C" and "h: \<Prod>x: C. D x"
shows "compose A (compose B h g) f \<equiv> compose A h (compose A g f)"
by (derive lems: assms cong)
diff --git a/Projections.thy b/Projections.thy
index 509402b..c819240 100644
--- a/Projections.thy
+++ b/Projections.thy
@@ -1,43 +1,45 @@
-(*
-Title: Projections.thy
-Author: Joshua Chen
-Date: 2018
+(********
+Isabelle/HoTT: Projections
+Feb 2019
-Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
-*)
+Projection functions for the dependent sum type.
+
+********)
theory Projections
imports HoTT_Methods Prod Sum
begin
-
-definition fst :: "t \<Rightarrow> t" where "fst p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. x) p"
-definition snd :: "t \<Rightarrow> t" where "snd p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. y) p"
+definition fst :: "[t, t] \<Rightarrow> t" where "fst A p \<equiv> indSum (\<lambda>_. A) (\<lambda>x y. x) p"
lemma fst_type:
- assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x" shows "fst p: A"
+ assumes "A: U i" and "p: \<Sum>x: A. B x" shows "fst A p: A"
unfolding fst_def by (derive lems: assms)
-lemma fst_comp:
- assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "fst <a,b> \<equiv> a"
+declare fst_type [intro]
+
+lemma fst_cmp:
+ assumes "A: U i" and "B: A \<leadsto> U i" and "a: A" and "b: B a" shows "fst A <a, b> \<equiv> a"
unfolding fst_def by compute (derive lems: assms)
-lemma snd_type:
- assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x" shows "snd p: B (fst p)"
-unfolding snd_def proof (derive lems: assms)
- show "\<And>p. p: \<Sum>x:A. B x \<Longrightarrow> fst p: A" using assms(1-2) by (rule fst_type)
+declare fst_cmp [comp]
- fix x y assume asm: "x: A" "y: B x"
- show "y: B (fst <x,y>)" by (derive lems: asm assms fst_comp)
+definition snd :: "[t, t \<Rightarrow> t, t] \<Rightarrow> t" where "snd A B p \<equiv> indSum (\<lambda>p. B (fst A p)) (\<lambda>x y. y) p"
+
+lemma snd_type:
+ assumes "A: U i" and "B: A \<leadsto> U i" and "p: \<Sum>x: A. B x" shows "snd A B p: B (fst A p)"
+unfolding snd_def proof (routine add: assms)
+ fix x y assume "x: A" and "y: B x"
+ with assms have [comp]: "fst A <x, y> \<equiv> x" by derive
+ note \<open>y: B x\<close> then show "y: B (fst A <x, y>)" by compute
qed
-lemma snd_comp:
- assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "snd <a,b> \<equiv> b"
+lemma snd_cmp:
+ assumes "A: U i" and "B: A \<leadsto> U i" and "a: A" and "b: B a" shows "snd A B <a,b> \<equiv> b"
unfolding snd_def by (derive lems: assms)
lemmas Proj_types [intro] = fst_type snd_type
-lemmas Proj_comps [comp] = fst_comp snd_comp
-
+lemmas Proj_comps [comp] = fst_cmp snd_cmp
end
diff --git a/Sum.thy b/Sum.thy
index 2646c97..9549a5e 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -1,59 +1,56 @@
-(*
-Title: Sum.thy
-Author: Joshua Chen
-Date: 2018
+(********
+Isabelle/HoTT: Dependent sum (dependent pair)
+Feb 2019
-Dependent sum type
-*)
+********)
theory Sum
imports HoTT_Base
begin
-
axiomatization
- Sum :: "[t, tf] \<Rightarrow> t" and
+ Sum :: "[t, t \<Rightarrow> t] \<Rightarrow> t" and
pair :: "[t, t] \<Rightarrow> t" ("(1<_,/ _>)") and
- indSum :: "[[t, t] \<Rightarrow> t, t] \<Rightarrow> t" ("(1ind\<^sub>\<Sum>)")
+ indSum :: "[t \<Rightarrow> t, [t, t] \<Rightarrow> t, t] \<Rightarrow> t"
syntax
- "_sum" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Sum>_:_./ _)" 20)
- "_sum_ascii" :: "[idt, t, t] \<Rightarrow> t" ("(3SUM _:_./ _)" 20)
-
+ "_Sum" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Sum>'(_: _')./ _)" 20)
+ "_Sum'" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Sum>_: _./ _)" 20)
translations
- "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
- "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)"
+ "\<Sum>(x: A). B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
+ "\<Sum>x: A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
abbreviation Pair :: "[t, t] \<Rightarrow> t" (infixr "\<times>" 50)
- where "A \<times> B \<equiv> \<Sum>_:A. B"
+ where "A \<times> B \<equiv> \<Sum>_: A. B"
axiomatization where
\<comment> \<open>Type rules\<close>
- Sum_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x: U i" and
+ Sum_form: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> B x: U i\<rbrakk> \<Longrightarrow> \<Sum>x: A. B x: U i" and
- Sum_intro: "\<lbrakk>B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a,b>: \<Sum>x:A. B x" and
+ Sum_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> B x: U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a, b>: \<Sum>x: A. B x" and
Sum_elim: "\<lbrakk>
- p: \<Sum>x:A. B x;
- C: \<Sum>x:A. B x \<longrightarrow> U i;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x,y> \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> f p: C p" and
+ p: \<Sum>x: A. B x;
+ C: \<Sum>x: A. B x \<leadsto> U i;
+ \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x,y> \<rbrakk> \<Longrightarrow> indSum C f p: C p" and
- Sum_comp: "\<lbrakk>
+ Sum_cmp: "\<lbrakk>
a: A;
b: B a;
- B: A \<longrightarrow> U i;
- C: \<Sum>x:A. B x \<longrightarrow> U i;
- \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f x y: C <x,y> \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> f <a,b> \<equiv> f a b" and
+ B: A \<leadsto> U i;
+ C: \<Sum>x: A. B x \<leadsto> U i;
+ \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x,y> \<rbrakk> \<Longrightarrow> indSum C f <a, b> \<equiv> f a b" and
\<comment> \<open>Congruence rules\<close>
- Sum_form_eq: "\<lbrakk>A: U i; B: A \<longrightarrow> U i; C: A \<longrightarrow> U i; \<And>x. x: A \<Longrightarrow> B x \<equiv> C x\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x \<equiv> \<Sum>x:A. C x"
+ Sum_form_eq: "\<lbrakk>A: U i; B: A \<leadsto> U i; C: A \<leadsto> U i; \<And>x. x: A \<Longrightarrow> B x \<equiv> C x\<rbrakk>
+ \<Longrightarrow> \<Sum>x: A. B x \<equiv> \<Sum>x: A. C x"
lemmas Sum_form [form]
lemmas Sum_routine [intro] = Sum_form Sum_intro Sum_elim
-lemmas Sum_comp [comp]
-
+lemmas Sum_comp [comp] = Sum_cmp
+lemmas Sum_cong [cong] = Sum_form_eq
end