aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2019-02-17 18:34:38 +0100
committerJosh Chen2019-02-17 18:34:38 +0100
commit68aa069172933b875d70a5ef71e9db0ae685a92d (patch)
treebd1da2111e12bab878641661d91f95f66f8132cc
parent76b57317d7568f4dcd673b1b8085601c6c723355 (diff)
Method "quantify" converts product inhabitation into Pure universal statements. Also misc. cleanups.
Diffstat (limited to '')
-rw-r--r--Equal.thy95
-rw-r--r--HoTT_Base.thy13
-rw-r--r--HoTT_Methods.thy29
-rw-r--r--Prod.thy28
-rw-r--r--Projections.thy4
-rw-r--r--Sum.thy4
6 files changed, 132 insertions, 41 deletions
diff --git a/Equal.thy b/Equal.thy
index 99ff268..1d8f6ae 100644
--- a/Equal.thy
+++ b/Equal.thy
@@ -1,52 +1,105 @@
-(*
-Title: Equal.thy
-Author: Joshua Chen
-Date: 2018
+(********
+Isabelle/HoTT: Equality
+Feb 2019
-Equality type
-*)
+********)
theory Equal
-imports HoTT_Base
+imports Prod HoTT_Methods
begin
-section \<open>Basic definitions\<close>
+section \<open>Type definitions\<close>
axiomatization
- Equal :: "[t, t, t] \<Rightarrow> t" and
- refl :: "t \<Rightarrow> t" and
- indEqual :: "[t \<Rightarrow> t, t] \<Rightarrow> t" ("(1ind\<^sub>=)")
+ Eq :: "[t, t, t] \<Rightarrow> t" and
+ refl :: "t \<Rightarrow> t" and
+ indEq :: "[[t, t, t] \<Rightarrow> t, t \<Rightarrow> t, t] \<Rightarrow> t"
syntax
- "_equal" :: "[t, t, t] \<Rightarrow> t" ("(3_ =\<^sub>_/ _)" [101, 0, 101] 100)
- "_equal_ascii" :: "[t, t, t] \<Rightarrow> t" ("(3_ =[_]/ _)" [101, 0, 101] 100)
-
+ "_Eq" :: "[t, t, t] \<Rightarrow> t" ("(3_ =[_]/ _)" [101, 0, 101] 100)
translations
- "a =[A] b" \<rightleftharpoons> "CONST Equal A a b"
- "a =\<^sub>A b" \<rightharpoonup> "CONST Equal A a b"
+ "a =[A] b" \<rightleftharpoons> "(CONST Eq) A a b"
axiomatization where
- Equal_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U i" and
+ Equal_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =[A] b: U i" and
- Equal_intro: "a : A \<Longrightarrow> (refl a): a =\<^sub>A a" and
+ Equal_intro: "a: A \<Longrightarrow> (refl a): a =[A] a" and
Equal_elim: "\<lbrakk>
- p: x =\<^sub>A y;
+ p: x =[A] y;
x: A;
y: A;
\<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
- \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i \<rbrakk> \<Longrightarrow> ind\<^sub>= f p : C x y p" and
+ \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =[A] y \<leadsto> U i \<rbrakk> \<Longrightarrow> indEq C f p : C x y p" and
Equal_comp: "\<lbrakk>
a: A;
\<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
- \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i \<rbrakk> \<Longrightarrow> ind\<^sub>= f (refl a) \<equiv> f a"
+ \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =[A] y \<leadsto> U i \<rbrakk> \<Longrightarrow> indEq C f (refl a) \<equiv> f a"
lemmas Equal_form [form]
lemmas Equal_routine [intro] = Equal_form Equal_intro Equal_elim
lemmas Equal_comp [comp]
+section \<open>Path induction\<close>
+
+text \<open>We set up rudimentary automation of path induction:\<close>
+
+method path_ind for x y p :: t =
+ (rule Equal_elim[where ?x=x and ?y=y and ?p=p]; (fact | assumption)?)
+
+
+section \<open>Properties of equality\<close>
+
+subsection \<open>Symmetry (path inverse)\<close>
+
+definition inv :: "[t, t] \<Rightarrow> t"
+where "inv A p \<equiv> indEq (\<lambda>x y. ^(y =[A] x)) (\<lambda>x. refl x) p"
+
+lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv A p: y =[A] x"
+unfolding inv_def by derive
+
+lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv A (refl a) \<equiv> refl a"
+unfolding inv_def by derive
+
+declare
+ inv_type [intro]
+ inv_comp [comp]
+
+subsection \<open>Transitivity (path composition)\<close>
+
+schematic_goal transitivity:
+ assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
+ shows "?p: \<Prod>z: A. y =[A]z \<rightarrow> x =[A] z"
+proof (path_ind x y p, quantify 2)
+ fix x z show "\<And>p. p: x =[A] z \<Longrightarrow> p: x =[A] z" .
+qed (routine add: assms)
+
+
+syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "\<bullet>" 110)
+translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q"
+
+lemma pathcomp_type:
+ assumes "A: U i" "x: A" "y: A" "z: A"
+ shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"
+unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms)
+
+corollary pathcomp_trans:
+ assumes "A: U i" and "x: A" "y: A" "z: A" and "p: x =\<^sub>A y" "q: y =\<^sub>A z"
+ shows "p \<bullet> q: x =\<^sub>A z"
+by (routine add: assms pathcomp_type)
+
+lemma pathcomp_comp:
+ assumes "A: U i" and "a: A"
+ shows "(refl a) \<bullet> (refl a) \<equiv> refl a"
+unfolding pathcomp_def by (derive lems: assms)
+
+declare
+ pathcomp_type [intro]
+ pathcomp_trans [intro]
+ pathcomp_comp [comp]
+
end
diff --git a/HoTT_Base.thy b/HoTT_Base.thy
index 9dcf6d0..1dcf61c 100644
--- a/HoTT_Base.thy
+++ b/HoTT_Base.thy
@@ -2,11 +2,11 @@
Isabelle/HoTT: Basic logical definitions and notation
Feb 2019
-This file completes the basic logical and functional setup of the HoTT logic.
-Among other things, it:
+This file completes the basic logical and functional setup of the HoTT logic. It defines:
-* Defines the universe hierarchy and its governing rules.
-* Defines named theorems for later use by proof methods.
+* The universe hierarchy and its governing rules.
+* Some notational abbreviations.
+* Named theorems for later use by proof methods.
********)
@@ -50,13 +50,16 @@ Instead use @{method elim}, or instantiate the rules suitably.
\<close>
-section \<open>Type families\<close>
+section \<open>Notation\<close>
abbreviation (input) constraint :: "[t \<Rightarrow> t, t, t] \<Rightarrow> prop" ("(1_:/ _ \<leadsto> _)")
where "f: A \<leadsto> B \<equiv> (\<And>x. x: A \<Longrightarrow> f x: B)"
text \<open>We use the notation @{prop "B: A \<leadsto> U i"} to abbreviate type families.\<close>
+abbreviation (input) K_combinator :: "'a \<Rightarrow> 'b \<Rightarrow> 'a" ("^_" [1000])
+where "^A \<equiv> \<lambda>_. A"
+
section \<open>Named theorems\<close>
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index 088c1fa..d93680a 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -2,6 +2,8 @@
Isabelle/HoTT: Proof methods
Jan 2019
+Setup various proof methods and auxiliary functionality.
+
********)
theory HoTT_Methods
@@ -10,6 +12,25 @@ imports HoTT_Base "HOL-Eisbach.Eisbach" "HOL-Eisbach.Eisbach_Tools"
begin
+section \<open>More method combinators\<close>
+
+ML \<open>
+(* Use as "repeat n tac" *)
+fun repeat tac =
+ let
+ fun cparser_of parser (ctxt, toks) = parser toks ||> (fn toks => (ctxt, toks))
+ in
+ cparser_of Args.text >>
+ (fn n => fn ctxt => fn facts =>
+ SIMPLE_METHOD (
+ REPEAT_DETERM_N
+ (the (Int.fromString n))
+ (tac ctxt))
+ facts)
+ end
+\<close>
+
+
section \<open>Substitution and simplification\<close>
ML_file "~~/src/Tools/misc_legacy.ML"
@@ -67,12 +88,4 @@ It also handles universes using @{method hierarchy} and @{method cumulativity}.
method derive uses lems = (routine add: lems | compute comp: lems | cumulativity form: lems | hierarchy)+
-
-section \<open>Induction\<close>
-
-text \<open>
-Placeholder section for the automation of induction, i.e. using the type elimination rules.
-At the moment one must directly apply them with @{method rule} or @{method elim}.
-\<close>
-
end
diff --git a/Prod.thy b/Prod.thy
index 4235793..a843c7a 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -9,6 +9,7 @@ imports HoTT_Base HoTT_Methods
begin
+
section \<open>Basic type definitions\<close>
axiomatization
@@ -35,14 +36,14 @@ The syntax translations above bind the variable @{term x} in the expressions @{t
text \<open>Non-dependent functions are a special case:\<close>
abbreviation Fun :: "[t, t] \<Rightarrow> t" (infixr "\<rightarrow>" 40)
-where "A \<rightarrow> B \<equiv> \<Prod>(_: A). B"
+where "A \<rightarrow> B \<equiv> \<Prod>_: A. B"
axiomatization where
\<comment> \<open>Type rules\<close>
Prod_form: "\<lbrakk>A: U i; B: A \<leadsto> U i\<rbrakk> \<Longrightarrow> \<Prod>x: A. B x: U i" and
- Prod_intro: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x: \<Prod>x: A. B x" and
+ Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x: \<Prod>x: A. B x" and
Prod_elim: "\<lbrakk>f: \<Prod>x: A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a" and
@@ -68,6 +69,25 @@ lemmas Prod_routine [intro] = Prod_form Prod_intro Prod_elim
lemmas Prod_comp [comp] = Prod_cmp Prod_uniq
lemmas Prod_cong [cong] = Prod_form_eq Prod_intro_eq
+
+section \<open>Universal quantification\<close>
+
+text \<open>
+It will often be useful to convert a proof goal asserting the inhabitation of a dependent product to one that instead uses Pure universal quantification.
+
+Method @{theory_text quantify} converts the goal
+@{text "t: \<Prod>x1: A1. ... \<Prod>xn: An. B x1 ... xn"},
+where @{term B} is not a product, to
+@{text "\<And>x1 ... xn . \<lbrakk>x1: A1; ...; xn: An\<rbrakk> \<Longrightarrow> ?b x1 ... xn: B x1 ... xn"}.
+
+Method @{theory_text "quantify k"} does the same, but only for the first k unknowns.
+\<close>
+
+method_setup quantify = \<open>repeat (fn ctxt => Method.rule_tac ctxt [@{thm Prod_intro}] [] 1)\<close>
+
+method quantify_all = (rule Prod_intro)+
+
+
section \<open>Function composition\<close>
definition compose :: "[t, t, t] \<Rightarrow> t"
@@ -76,6 +96,7 @@ where "compose A g f \<equiv> \<lambda>x: A. g`(f`x)"
declare compose_def [comp]
syntax "_compose" :: "[t, t] \<Rightarrow> t" (infixr "o" 110)
+(*
parse_translation \<open>
let fun compose_tr ctxt [g, f] =
let
@@ -98,6 +119,7 @@ in
[("_compose", compose_tr)]
end
\<close>
+*)
text \<open>Pretty-printing switch for composition; hides domain type information.\<close>
@@ -120,7 +142,7 @@ by (derive lems: assms cong)
lemma compose_comp:
assumes "A: U i" and "\<And>x. x: A \<Longrightarrow> b x: B" and "\<And>x. x: B \<Longrightarrow> c x: C x"
- shows "(\<lambda>x: B. c x) o (\<lambda>x: A. b x) \<equiv> \<lambda>x: A. c (b x)"
+ shows "compose A (\<lambda>x: B. c x) (\<lambda>x: A. b x) \<equiv> \<lambda>x: A. c (b x)"
by (derive lems: assms cong)
abbreviation id :: "t \<Rightarrow> t" where "id A \<equiv> \<lambda>x: A. x"
diff --git a/Projections.thy b/Projections.thy
index c819240..8ff6b30 100644
--- a/Projections.thy
+++ b/Projections.thy
@@ -39,7 +39,7 @@ lemma snd_cmp:
assumes "A: U i" and "B: A \<leadsto> U i" and "a: A" and "b: B a" shows "snd A B <a,b> \<equiv> b"
unfolding snd_def by (derive lems: assms)
-lemmas Proj_types [intro] = fst_type snd_type
-lemmas Proj_comps [comp] = fst_cmp snd_cmp
+lemmas Proj_type [intro] = fst_type snd_type
+lemmas Proj_comp [comp] = fst_cmp snd_cmp
end
diff --git a/Sum.thy b/Sum.thy
index 9549a5e..ee132b3 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -18,8 +18,8 @@ syntax
"_Sum" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Sum>'(_: _')./ _)" 20)
"_Sum'" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Sum>_: _./ _)" 20)
translations
- "\<Sum>(x: A). B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
- "\<Sum>x: A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
+ "\<Sum>(x: A). B" \<rightleftharpoons> "(CONST Sum) A (\<lambda>x. B)"
+ "\<Sum>x: A. B" \<rightleftharpoons> "(CONST Sum) A (\<lambda>x. B)"
abbreviation Pair :: "[t, t] \<Rightarrow> t" (infixr "\<times>" 50)
where "A \<times> B \<equiv> \<Sum>_: A. B"