aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2018-06-30 07:07:42 +0200
committerJosh Chen2018-06-30 07:07:42 +0200
commit352a6e40a5bdf193b8f9690e76aede4e0650a445 (patch)
tree01904cf0570b28389cfcb02d4bb4b26ef086f067
parent0dfe6d34967faaf366ed4ac7b5718b64b7f5a721 (diff)
Equality
Diffstat (limited to '')
-rw-r--r--Equal.thy83
-rw-r--r--EqualProps.thy90
-rw-r--r--HoTT_Methods.thy14
3 files changed, 131 insertions, 56 deletions
diff --git a/Equal.thy b/Equal.thy
index 02fe540..6c18084 100644
--- a/Equal.thy
+++ b/Equal.thy
@@ -12,7 +12,10 @@ begin
axiomatization
Equal :: "[Term, Term, Term] \<Rightarrow> Term" and
refl :: "Term \<Rightarrow> Term" ("(refl'(_'))" 1000) and
- indEqual :: "[Term, [Term, Term, Term] \<Rightarrow> Term] \<Rightarrow> Term" ("(indEqual[_])")
+ indEqual :: "[Term, [Term, Term] \<Rightarrow> Typefam, Term \<Rightarrow> Term, Term, Term, Term] \<Rightarrow> Term" ("(indEqual[_])")
+
+
+section \<open>Syntax\<close>
syntax
"_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 101] 100)
@@ -21,64 +24,36 @@ translations
"a =[A] b" \<rightleftharpoons> "CONST Equal A a b"
"a =\<^sub>A b" \<rightharpoonup> "CONST Equal A a b"
+
+section \<open>Type rules\<close>
+
axiomatization where
- Equal_form: "\<And>A a b::Term. \<lbrakk>A : U; a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U"
- (* Should I write a permuted version \<open>\<lbrakk>A : U; b : A; a : A\<rbrakk> \<Longrightarrow> \<dots>\<close>? *)
+ Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U"
and
- Equal_intro [intro]: "\<And>A x::Term. x : A \<Longrightarrow> refl(x) : x =\<^sub>A x"
+ Equal_form_cond1: "\<And>A a b. a =\<^sub>A b : U \<Longrightarrow> A : U"
and
- Equal_elim [elim]:
- "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term) (b::Term) (p::Term).
- \<lbrakk> \<And>x y::Term. \<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C(x)(y): x =\<^sub>A y \<rightarrow> U;
- f : \<Prod>x:A. C(x)(x)(refl(x));
- a : A;
- b : A;
- p : a =\<^sub>A b \<rbrakk>
- \<Longrightarrow> indEqual[A](C)`f`a`b`p : C(a)(b)(p)"
+ Equal_form_cond2: "\<And>A a b. a =\<^sub>A b : U \<Longrightarrow> a : A"
and
- Equal_comp [simp]:
- "\<And>(A::Term) (C::[Term, Term, Term] \<Rightarrow> Term) (f::Term) (a::Term). indEqual[A](C)`f`a`a`refl(a) \<equiv> f`a"
-
-lemmas Equal_formation [intro] = Equal_form Equal_form[rotated 1] Equal_form[rotated 2]
-
-subsubsection \<open>Properties of equality\<close>
-
-text "Symmetry/Path inverse"
-
-definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])")
- where "inv[A,x,y] \<equiv> indEqual[A](\<lambda>x y _. y =\<^sub>A x)`(\<^bold>\<lambda>x:A. refl(x))`x`y"
-
-lemma inv_comp: "\<And>A a::Term. a : A \<Longrightarrow> inv[A,a,a]`refl(a) \<equiv> refl(a)" unfolding inv_def by simp
-
-text "Transitivity/Path composition"
-
-\<comment> \<open>"Raw" composition function\<close>
-definition compose' :: "Term \<Rightarrow> Term" ("(1compose''[_])")
- where "compose'[A] \<equiv> indEqual[A](\<lambda>x y _. \<Prod>z:A. \<Prod>q: y =\<^sub>A z. x =\<^sub>A z)`(indEqual[A](\<lambda>x z _. x =\<^sub>A z)`(\<^bold>\<lambda>x:A. refl(x)))"
-
-\<comment> \<open>"Natural" composition function\<close>
-abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])")
- where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. \<^bold>\<lambda>q:y =\<^sub>A z. compose'[A]`x`y`p`z`q"
-
-(**** GOOD CANDIDATE FOR AUTOMATION ****)
-lemma compose_comp:
- assumes "a : A"
- shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)" using assms Equal_intro[OF assms] unfolding compose'_def by simp
-
-text "The above proof is a good candidate for proof automation; in particular we would like the system to be able to automatically find the conditions of the \<open>using\<close> clause in the proof.
-This would likely involve something like:
- 1. Recognizing that there is a function application that can be simplified.
- 2. Noting that the obstruction to applying \<open>Prod_comp\<close> is the requirement that \<open>refl(a) : a =\<^sub>A a\<close>.
- 3. Obtaining such a condition, using the known fact \<open>a : A\<close> and the introduction rule \<open>Equal_intro\<close>."
-
-lemmas Equal_simps [simp] = inv_comp compose_comp
-
-subsubsection \<open>Pretty printing\<close>
+ Equal_form_cond3: "\<And>A a b. a =\<^sub>A b : U \<Longrightarrow> b : A"
+and
+ Equal_intro: "\<And>A a. a : A \<Longrightarrow> refl(a) : a =\<^sub>A a"
+and
+ Equal_elim: "\<And>A C f a b p. \<lbrakk>
+ \<And>x y.\<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<rightarrow> U;
+ \<And>x. x : A \<Longrightarrow> f x : C x x refl(x);
+ a : A;
+ b : A;
+ p : a =\<^sub>A b
+ \<rbrakk> \<Longrightarrow> indEqual[A] C f a b p : C a b p"
+and
+ Equal_comp: "\<And>A C f a. \<lbrakk>
+ \<And>x y.\<lbrakk>x : A; y : A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<rightarrow> U;
+ \<And>x. x : A \<Longrightarrow> f x : C x x refl(x);
+ a : A
+ \<rbrakk> \<Longrightarrow> indEqual[A] C f a a refl(a) \<equiv> f a"
-abbreviation inv_pretty :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1_\<^sup>-\<^sup>1[_, _, _])" 500)
- where "p\<^sup>-\<^sup>1[A,x,y] \<equiv> inv[A,x,y]`p"
+lemmas Equal_rules [intro] = Equal_form Equal_intro Equal_elim Equal_comp
+lemmas Equal_form_conds [elim] = Equal_form_cond1 Equal_form_cond2 Equal_form_cond3
-abbreviation compose_pretty :: "[Term, Term, Term, Term, Term, Term] \<Rightarrow> Term" ("(1_ \<bullet>[_, _, _, _]/ _)")
- where "p \<bullet>[A,x,y,z] q \<equiv> compose[A,x,y,z]`p`q"
end \ No newline at end of file
diff --git a/EqualProps.thy b/EqualProps.thy
new file mode 100644
index 0000000..3b0de79
--- /dev/null
+++ b/EqualProps.thy
@@ -0,0 +1,90 @@
+(* Title: HoTT/EqualProps.thy
+ Author: Josh Chen
+ Date: Jun 2018
+
+Properties of equality.
+*)
+
+theory EqualProps
+ imports
+ HoTT_Methods
+ Equal
+ Prod
+begin
+
+section \<open>Symmetry / Path inverse\<close>
+
+definition inv :: "[Term, Term, Term] \<Rightarrow> Term" ("(1inv[_,/ _,/ _])")
+ where "inv[A,x,y] \<equiv> \<^bold>\<lambda>p: (x =\<^sub>A y). indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) x y p"
+
+lemma inv_type:
+ assumes "p : x =\<^sub>A y"
+ shows "inv[A,x,y]`p : y =\<^sub>A x"
+
+proof
+ show "inv[A,x,y] : (x =\<^sub>A y) \<rightarrow> (y =\<^sub>A x)"
+ proof (unfold inv_def, standard)
+ fix p assume asm: "p : x =\<^sub>A y"
+ show "indEqual[A] (\<lambda>x y _. y =[A] x) refl x y p : y =\<^sub>A x"
+ proof standard+
+ show "x : A" by (wellformed jdgmt: asm)
+ show "y : A" by (wellformed jdgmt: asm)
+ qed (assumption | rule | rule asm)+
+ qed (wellformed jdgmt: assms)
+qed (rule assms)
+
+
+lemma inv_comp:
+ assumes "a : A"
+ shows "inv[A,a,a]`refl(a) \<equiv> refl(a)"
+
+proof -
+ have "inv[A,a,a]`refl(a) \<equiv> indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) a a refl(a)"
+ proof (unfold inv_def, standard)
+ show "refl(a) : a =\<^sub>A a" using assms ..
+
+ fix p assume asm: "p : a =\<^sub>A a"
+ show "indEqual[A] (\<lambda>x y _. y =\<^sub>A x) refl a a p : a =\<^sub>A a"
+ proof standard+
+ show "a : A" by (wellformed jdgmt: asm)
+ then show "a : A" . \<comment> \<open>The elimination rule requires that both arguments to \<open>indEqual\<close> be shown to have the correct type.\<close>
+ qed (assumption | rule | rule asm)+
+ qed
+
+ also have "indEqual[A] (\<lambda>x y _. y =\<^sub>A x) (\<lambda>x. refl(x)) a a refl(a) \<equiv> refl(a)"
+ by (standard | assumption | rule assms)+
+
+ finally show "inv[A,a,a]`refl(a) \<equiv> refl(a)" .
+qed
+
+section \<open>Transitivity / Path composition\<close>
+
+\<comment> \<open>"Raw" composition function\<close>
+definition compose' :: "Term \<Rightarrow> Term" ("(1compose''[_])")
+ where "compose'[A] \<equiv>
+ indEqual[A] (\<lambda>x y _. \<Prod>z:A. \<Prod>q: y =\<^sub>A z. x =\<^sub>A z) (indEqual[A](\<lambda>x z _. x =\<^sub>A z) (\<^bold>\<lambda>x:A. refl(x)))"
+
+\<comment> \<open>"Natural" composition function\<close>
+abbreviation compose :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1compose[_,/ _,/ _,/ _])")
+ where "compose[A,x,y,z] \<equiv> \<^bold>\<lambda>p:x =\<^sub>A y. \<^bold>\<lambda>q:y =\<^sub>A z. compose'[A]`x`y`p`z`q"
+
+(**** GOOD CANDIDATE FOR AUTOMATION ****)
+lemma compose_comp:
+ assumes "a : A"
+ shows "compose[A,a,a,a]`refl(a)`refl(a) \<equiv> refl(a)" using assms Equal_intro[OF assms] unfolding compose'_def by simp
+
+text "The above proof is a good candidate for proof automation; in particular we would like the system to be able to automatically find the conditions of the \<open>using\<close> clause in the proof.
+This would likely involve something like:
+ 1. Recognizing that there is a function application that can be simplified.
+ 2. Noting that the obstruction to applying \<open>Prod_comp\<close> is the requirement that \<open>refl(a) : a =\<^sub>A a\<close>.
+ 3. Obtaining such a condition, using the known fact \<open>a : A\<close> and the introduction rule \<open>Equal_intro\<close>."
+
+lemmas Equal_simps [simp] = inv_comp compose_comp
+
+subsubsection \<open>Pretty printing\<close>
+
+abbreviation inv_pretty :: "[Term, Term, Term, Term] \<Rightarrow> Term" ("(1_\<^sup>-\<^sup>1[_, _, _])" 500)
+ where "p\<^sup>-\<^sup>1[A,x,y] \<equiv> inv[A,x,y]`p"
+
+abbreviation compose_pretty :: "[Term, Term, Term, Term, Term, Term] \<Rightarrow> Term" ("(1_ \<bullet>[_, _, _, _]/ _)")
+ where "p \<bullet>[A,x,y,z] q \<equiv> compose[A,x,y,z]`p`q" \ No newline at end of file
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index aa6fca2..7886c1a 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -11,6 +11,7 @@ theory HoTT_Methods
"HOL-Eisbach.Eisbach"
"HOL-Eisbach.Eisbach_Tools"
HoTT_Base
+ Equal
Prod
Sum
begin
@@ -27,16 +28,25 @@ method wellformed uses jdgmt = (
"A : U" for A \<Rightarrow> \<open>
match (A) in
"\<Prod>x:?A. ?B x" \<Rightarrow> \<open>
- rule Prod.Prod_form_cond1[OF jdgmt] |
+ print_term "\<Pi>",
+ (rule Prod.Prod_form_cond1[OF jdgmt] |
rule Prod.Prod_form_cond2[OF jdgmt] |
catch \<open>wellformed jdgmt: Prod.Prod_form_cond1[OF jdgmt]\<close> \<open>fail\<close> |
- catch \<open>wellformed jdgmt: Prod.Prod_form_cond2[OF jdgmt]\<close> \<open>fail\<close>
+ catch \<open>wellformed jdgmt: Prod.Prod_form_cond2[OF jdgmt]\<close> \<open>fail\<close>)
\<close> \<bar>
"\<Sum>x:?A. ?B x" \<Rightarrow> \<open>
rule Sum.Sum_form_cond1[OF jdgmt] |
rule Sum.Sum_form_cond2[OF jdgmt] |
catch \<open>wellformed jdgmt: Sum.Sum_form_cond1[OF jdgmt]\<close> \<open>fail\<close> |
catch \<open>wellformed jdgmt: Sum.Sum_form_cond2[OF jdgmt]\<close> \<open>fail\<close>
+ \<close> \<bar>
+ "?a =[?A] ?b" \<Rightarrow> \<open>
+ rule Equal.Equal_form_cond1[OF jdgmt] |
+ rule Equal.Equal_form_cond2[OF jdgmt] |
+ rule Equal.Equal_form_cond3[OF jdgmt] |
+ catch \<open>wellformed jdgmt: Equal.Equal_form_cond1[OF jdgmt]\<close> \<open>fail\<close> |
+ catch \<open>wellformed jdgmt: Equal.Equal_form_cond2[OF jdgmt]\<close> \<open>fail\<close> |
+ catch \<open>wellformed jdgmt: Equal.Equal_form_cond3[OF jdgmt]\<close> \<open>fail\<close>
\<close>
\<close> \<bar>
"PROP ?P \<Longrightarrow> PROP Q" for Q \<Rightarrow> \<open>