#![allow(non_snake_case)]
use std::collections::BTreeMap;
use std::fmt::{self, Display};
use std::path::PathBuf;
/*
module Dhall.Core (
-- * Syntax
Const(..)
, Path(..)
, Var(..)
, Expr(..)
-- * Normalization
, normalize
, subst
, shift
-- * Pretty-printing
, pretty
-- * Miscellaneous
, internalError
) where
*/
/// Constants for a pure type system
///
/// The only axiom is:
///
/// ```c
/// ⊦ Type : Kind
/// ```
///
/// ... and the valid rule pairs are:
///
/// ```c
/// ⊦ Type ↝ Type : Type -- Functions from terms to terms (ordinary functions)
/// ⊦ Kind ↝ Type : Type -- Functions from types to terms (polymorphic functions)
/// ⊦ Kind ↝ Kind : Kind -- Functions from types to types (type constructors)
/// ```
///
/// These are the same rule pairs as System Fω
///
/// Note that Dhall does not support functions from terms to types and therefore
/// Dhall is not a dependently typed language
///
#[derive(Debug, Copy, Clone, PartialEq, Eq)] // (Show, Bounded, Enum)
pub enum Const {
Type,
Kind,
}
/// Path to an external resource
#[derive(Debug, Clone, PartialEq, Eq)] // (Eq, Ord, Show)
pub enum Path {
File(PathBuf),
URL(String),
}
/// Label for a bound variable
///
/// The `String` field is the variable's name (i.e. \"`x`\").
///
/// The `Int` field disambiguates variables with the same name if there are
/// multiple bound variables of the same name in scope. Zero refers to the
/// nearest bound variable and the index increases by one for each bound
/// variable of the same name going outward. The following diagram may help:
///
/// ```c
/// +---refers to--+
/// | |
/// v |
/// \(x : Type) -> \(y : Type) -> \(x : Type) -> x@0
///
/// +------------------refers to-----------------+
/// | |
/// v |
/// \(x : Type) -> \(y : Type) -> \(x : Type) -> x@1
/// ```
///
/// This `Int` behaves like a De Bruijn index in the special case where all
/// variables have the same name.
///
/// You can optionally omit the index if it is `0`:
///
/// ```c
/// +refers to+
/// | |
/// v |
/// \(x : *) -> \(y : *) -> \(x : *) -> x
/// ```
///
/// Zero indices are omitted when pretty-printing `Var`s and non-zero indices
/// appear as a numeric suffix.
///
#[derive(Debug, Copy, Clone, PartialEq, Eq)] // (Eq, Show)
pub struct V<'i>(pub &'i str, pub usize);
/*
instance IsString Var where
fromString str = V (fromString str) 0
instance Buildable Var where
build = buildVar
*/
/// Syntax tree for expressions
#[derive(Debug, Clone, PartialEq)] // (Functor, Foldable, Traversable, Show)
pub enum Expr<'i, S, A> {
/// `Const c ~ c`
Const(Const),
/// `Var (V x 0) ~ x`
/// `Var (V x n) ~ x@n`
Var(V<'i>),
/// `Lam x A b ~ λ(x : A) -> b`
Lam(&'i str, Box>, Box>),
/// `Pi "_" A B ~ A -> B`
/// `Pi x A B ~ ∀(x : A) -> B`
Pi(&'i str, Box>, Box>),
/// `App f A ~ f A`
App(Box>, Box>),
/// `Let x Nothing r e ~ let x = r in e`
/// `Let x (Just t) r e ~ let x : t = r in e`
Let(&'i str, Option>>, Box>, Box>),
/// `Annot x t ~ x : t`
Annot(Box>, Box>),
/// Built-in types
BuiltinType(BuiltinType),
/// Built-in function values
BuiltinValue(BuiltinValue),
/// `BoolLit b ~ b`
BoolLit(bool),
/// `BoolAnd x y ~ x && y`
BoolAnd(Box>, Box>),
/// `BoolOr x y ~ x || y`
BoolOr(Box>, Box>),
/// `BoolEQ x y ~ x == y`
BoolEQ(Box>, Box>),
/// `BoolNE x y ~ x != y`
BoolNE(Box>, Box>),
/// `BoolIf x y z ~ if x then y else z`
BoolIf(Box>, Box>, Box>),
/// `NaturalLit n ~ +n`
NaturalLit(Natural),
/// `NaturalPlus x y ~ x + y`
NaturalPlus(Box>, Box>),
/// `NaturalTimes x y ~ x * y`
NaturalTimes(Box>, Box>),
/// `IntegerLit n ~ n`
IntegerLit(Integer),
/// `DoubleLit n ~ n`
DoubleLit(Double),
/// `TextLit t ~ t`
TextLit(Builder),
/// `TextAppend x y ~ x ++ y`
TextAppend(Box>, Box>),
/// `ListLit t [x, y, z] ~ [x, y, z] : List t`
ListLit(Box>, Vec>),
/// `OptionalLit t [e] ~ [e] : Optional t`
/// `OptionalLit t [] ~ [] : Optional t`
OptionalLit(Box>, Vec>),
/// `Record [(k1, t1), (k2, t2)] ~ { k1 : t1, k2 : t1 }`
Record(BTreeMap<&'i str, Expr<'i, S, A>>),
/// `RecordLit [(k1, v1), (k2, v2)] ~ { k1 = v1, k2 = v2 }`
RecordLit(BTreeMap<&'i str, Expr<'i, S, A>>),
/// `Union [(k1, t1), (k2, t2)] ~ < k1 : t1, k2 : t2 >`
Union(BTreeMap<&'i str, Expr<'i, S, A>>),
/// `UnionLit (k1, v1) [(k2, t2), (k3, t3)] ~ < k1 = t1, k2 : t2, k3 : t3 >`
UnionLit(&'i str, Box>, BTreeMap<&'i str, Expr<'i, S, A>>),
/// `Combine x y ~ x ∧ y`
Combine(Box>, Box>),
/// `Merge x y t ~ merge x y : t`
Merge(Box>, Box>, Box>),
/// `Field e x ~ e.x`
Field(Box>, &'i str),
/// `Note S x ~ e`
Note(S, Box>),
/// `Embed path ~ path`
Embed(A),
}
/// Built-in types
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum BuiltinType {
/// `Bool ~ Bool`
Bool,
/// `Natural ~ Natural`
Natural,
/// `Integer ~ Integer`
Integer,
/// `Double ~ Double`
Double,
/// `Text ~ Text`
Text,
/// `List ~ List`
List,
/// `Optional ~ Optional`
Optional,
}
/// Built-in function values
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum BuiltinValue {
/// `NaturalFold ~ Natural/fold`
NaturalFold,
/// `NaturalBuild ~ Natural/build`
NaturalBuild,
/// `NaturalIsZero ~ Natural/isZero`
NaturalIsZero,
/// `NaturalEven ~ Natural/even`
NaturalEven,
/// `NaturalOdd ~ Natural/odd`
NaturalOdd,
NaturalShow,
/// `ListBuild ~ List/build`
ListBuild,
/// `ListFold ~ List/fold`
ListFold,
/// `ListLength ~ List/length`
ListLength,
/// `ListHead ~ List/head`
ListHead,
/// `ListLast ~ List/last`
ListLast,
/// `ListIndexed ~ List/indexed`
ListIndexed,
/// `ListReverse ~ List/reverse`
ListReverse,
/// `OptionalFold ~ Optional/fold`
OptionalFold,
}
impl<'i> From<&'i str> for V<'i> {
fn from(s: &'i str) -> Self {
V(s, 0)
}
}
impl<'i, S, A> From<&'i str> for Expr<'i, S, A> {
fn from(s: &'i str) -> Self {
Expr::Var(s.into())
}
}
impl<'i, S, A> From for Expr<'i, S, A> {
fn from(t: BuiltinType) -> Self {
Expr::BuiltinType(t)
}
}
impl<'i, S, A> From for Expr<'i, S, A> {
fn from(t: BuiltinValue) -> Self {
Expr::BuiltinValue(t)
}
}
impl<'i, S, A> Expr<'i, S, A> {
fn bool_lit(&self) -> Option {
match *self {
Expr::BoolLit(v) => Some(v),
_ => None,
}
}
fn natural_lit(&self) -> Option {
match *self {
Expr::NaturalLit(v) => Some(v),
_ => None,
}
}
fn text_lit(&self) -> Option {
match *self {
Expr::TextLit(ref t) => Some(t.clone()), // FIXME?
_ => None,
}
}
}
// There is a one-to-one correspondence between the formatters in this section
// and the grammar in grammar.lalrpop. Each formatter is named after the
// corresponding grammar rule and the relationship between formatters exactly matches
// the relationship between grammar rules. This leads to the nice emergent property
// of automatically getting all the parentheses and precedences right.
//
// This approach has one major disadvantage: you can get an infinite loop if
// you add a new constructor to the syntax tree without adding a matching
// case the corresponding builder.
impl<'i, S, A: Display> Display for Expr<'i, S, A> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { // buildExprA
use crate::Expr::*;
match self {
&Annot(ref a, ref b) => { a.fmt_b(f)?; write!(f, " : ")?; b.fmt(f) }
&Note(_, ref b) => b.fmt(f),
a => a.fmt_b(f),
}
}
}
impl<'i, S, A: Display> Expr<'i, S, A> {
fn fmt_b(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
use crate::Expr::*;
match self {
&Lam(a, ref b, ref c) => {
write!(f, "λ({} : ", a)?;
b.fmt(f)?;
write!(f, ") → ")?;
c.fmt_b(f)
}
&BoolIf(ref a, ref b, ref c) => {
write!(f, "if ")?;
a.fmt(f)?;
write!(f, " then ")?;
b.fmt_b(f)?;
write!(f, " else ")?;
c.fmt_c(f)
}
&Pi("_", ref b, ref c) => {
b.fmt_c(f)?;
write!(f, " → ")?;
c.fmt_b(f)
}
&Pi(a, ref b, ref c) => {
write!(f, "∀({} : ", a)?;
b.fmt(f)?;
write!(f, ") → ")?;
c.fmt_b(f)
}
&Let(a, None, ref c, ref d) => {
write!(f, "let {} = ", a)?;
c.fmt(f)?;
write!(f, ") → ")?;
d.fmt_b(f)
}
&Let(a, Some(ref b), ref c, ref d) => {
write!(f, "let {} : ", a)?;
b.fmt(f)?;
write!(f, " = ")?;
c.fmt(f)?;
write!(f, ") → ")?;
d.fmt_b(f)
}
&ListLit(ref t, ref es) => {
fmt_list("[", "] : List ", es, f, |e, f| e.fmt(f))?;
t.fmt_e(f)
}
&OptionalLit(ref t, ref es) => {
fmt_list("[", "] : Optional ", es, f, |e, f| e.fmt(f))?;
t.fmt_e(f)
}
&Merge(ref a, ref b, ref c) => {
write!(f, "merge ")?;
a.fmt_e(f)?;
write!(f, " ")?;
b.fmt_e(f)?;
write!(f, " : ")?;
c.fmt_d(f)
}
&Note(_, ref b) => b.fmt_b(f),
a => a.fmt_c(f),
}
}
fn fmt_c(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
use crate::Expr::*;
match self {
// FIXME precedence
&BoolOr(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" || ")?; b.fmt_c(f) }
&TextAppend(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" ++ ")?; b.fmt_c(f) }
&NaturalPlus(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" + ")?; b.fmt_c(f) }
&BoolAnd(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" && ")?; b.fmt_c(f) }
&Combine(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" ^ ")?; b.fmt_c(f) }
&NaturalTimes(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" * ")?; b.fmt_c(f) }
&BoolEQ(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" == ")?; b.fmt_c(f) }
&BoolNE(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" != ")?; b.fmt_c(f) }
&Note(_, ref b) => b.fmt_c(f),
a => a.fmt_d(f),
}
}
fn fmt_d(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
use crate::Expr::*;
match self {
&App(ref a, ref b) => { a.fmt_d(f)?; f.write_str(" ")?; b.fmt_e(f) }
&Note(_, ref b) => b.fmt_d(f),
a => a.fmt_e(f)
}
}
fn fmt_e(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
use crate::Expr::*;
match self {
&Field(ref a, b) => { a.fmt_e(f)?; write!(f, ".{}", b) }
&Note(_, ref b) => b.fmt_e(f),
a => a.fmt_f(f)
}
}
fn fmt_f(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
use crate::Expr::*;
match self {
&Var(a) => a.fmt(f),
&Const(k) => k.fmt(f),
&BuiltinType(t) => t.fmt(f),
&BuiltinValue(v) => v.fmt(f),
&BoolLit(true) => f.write_str("True"),
&BoolLit(false) => f.write_str("False"),
&IntegerLit(a) => a.fmt(f),
&NaturalLit(a) => {
f.write_str("+")?;
a.fmt(f)
}
&DoubleLit(a) => a.fmt(f),
&TextLit(ref a) => ::fmt(a, f), // FIXME Format with Haskell escapes
&Record(ref a) if a.is_empty() => f.write_str("{}"),
&Record(ref a) => {
fmt_list("{ ", " }", a, f, |(k, t), f| write!(f, "{} : {}", k, t))
}
&RecordLit(ref a) if a.is_empty() => f.write_str("{=}"),
&RecordLit(ref a) => {
fmt_list("{ ", " }", a, f, |(k, v), f| write!(f, "{} = {}", k, v))
}
&Union(ref _a) => f.write_str("Union"),
&UnionLit(_a, ref _b, ref _c) => f.write_str("UnionLit"),
&Embed(ref a) => a.fmt(f),
&Note(_, ref b) => b.fmt_f(f),
a => write!(f, "({})", a),
}
}
}
fn fmt_list(open: &str,
close: &str,
it: I,
f: &mut fmt::Formatter,
func: F)
-> Result<(), fmt::Error>
where I: IntoIterator- ,
F: Fn(T, &mut fmt::Formatter) -> Result<(), fmt::Error>
{
f.write_str(open)?;
for (i, x) in it.into_iter().enumerate() {
if i > 0 {
f.write_str(", ")?;
}
func(x, f)?;
}
f.write_str(close)
}
impl Display for Const {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
::fmt(self, f)
}
}
impl Display for BuiltinType {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
::fmt(self, f)
}
}
impl Display for BuiltinValue {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
use crate::BuiltinValue::*;
f.write_str(match *self {
ListBuild => "List/build",
ListFold => "List/fold",
ListHead => "List/head",
ListIndexed => "List/indexed",
ListLast => "List/last",
ListLength => "List/length",
ListReverse => "List/reverse",
NaturalBuild => "Natural/build",
NaturalEven => "Natural/even",
NaturalFold => "Natural/fold",
NaturalIsZero => "Natural/isZero",
NaturalOdd => "Natural/odd",
NaturalShow => "Natural/show",
OptionalFold => "Optional/fold",
})
}
}
impl<'i> Display for V<'i> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let V(x, n) = *self;
f.write_str(x)?;
if n != 0 {
write!(f, "@{}", n)?;
}
Ok(())
}
}
pub fn pi<'i, S, A, Name, Et, Ev>(var: Name, ty: Et, value: Ev) -> Expr<'i, S, A>
where Name: Into<&'i str>,
Et: Into>,
Ev: Into>
{
Expr::Pi(var.into(), bx(ty.into()), bx(value.into()))
}
pub fn app<'i, S, A, Ef, Ex>(f: Ef, x: Ex) -> Expr<'i, S, A>
where Ef: Into>,
Ex: Into>
{
Expr::App(bx(f.into()), bx(x.into()))
}
pub type Builder = String;
pub type Double = f64;
pub type Int = isize;
pub type Integer = isize;
pub type Natural = usize;
/// A void type
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum X {}
impl Display for X {
fn fmt(&self, _: &mut fmt::Formatter) -> Result<(), fmt::Error> {
match *self {}
}
}
pub fn bx(x: T) -> Box {
Box::new(x)
}
fn add_ui(u: usize, i: isize) -> usize {
if i < 0 {
u.checked_sub(i.checked_neg().unwrap() as usize).unwrap()
} else {
u.checked_add(i as usize).unwrap()
}
}
fn map_record_value<'a, I, K, V, U, F>(it: I, f: F) -> BTreeMap
where I: IntoIterator
- ,
K: Eq + Ord + Copy + 'a,
V: 'a,
F: Fn(&V) -> U
{
it.into_iter().map(|(&k, v)| (k, f(v))).collect()
}
fn map_op2(f: F, g: G, a: T, b: T) -> V
where F: FnOnce(U, U) -> V,
G: Fn(T) -> U,
{
f(g(a), g(b))
}
/// `shift` is used by both normalization and type-checking to avoid variable
/// capture by shifting variable indices
///
/// For example, suppose that you were to normalize the following expression:
///
/// ```c
/// λ(a : Type) → λ(x : a) → (λ(y : a) → λ(x : a) → y) x
/// ```
///
/// If you were to substitute `y` with `x` without shifting any variable
/// indices, then you would get the following incorrect result:
///
/// ```c
/// λ(a : Type) → λ(x : a) → λ(x : a) → x -- Incorrect normalized form
/// ```
///
/// In order to substitute `x` in place of `y` we need to `shift` `x` by `1` in
/// order to avoid being misinterpreted as the `x` bound by the innermost
/// lambda. If we perform that `shift` then we get the correct result:
///
/// ```c
/// λ(a : Type) → λ(x : a) → λ(x : a) → x@1
/// ```
///
/// As a more worked example, suppose that you were to normalize the following
/// expression:
///
/// ```c
/// λ(a : Type)
/// → λ(f : a → a → a)
/// → λ(x : a)
/// → λ(x : a)
/// → (λ(x : a) → f x x@1) x@1
/// ```
///
/// The correct normalized result would be:
///
/// ```c
/// λ(a : Type)
/// → λ(f : a → a → a)
/// → λ(x : a)
/// → λ(x : a)
/// → f x@1 x
/// ```
///
/// The above example illustrates how we need to both increase and decrease
/// variable indices as part of substitution:
///
/// * We need to increase the index of the outer `x\@1` to `x\@2` before we
/// substitute it into the body of the innermost lambda expression in order
/// to avoid variable capture. This substitution changes the body of the
/// lambda expression to `(f x\@2 x\@1)`
///
/// * We then remove the innermost lambda and therefore decrease the indices of
/// both `x`s in `(f x\@2 x\@1)` to `(f x\@1 x)` in order to reflect that one
/// less `x` variable is now bound within that scope
///
/// Formally, `(shift d (V x n) e)` modifies the expression `e` by adding `d` to
/// the indices of all variables named `x` whose indices are greater than
/// `(n + m)`, where `m` is the number of bound variables of the same name
/// within that scope
///
/// In practice, `d` is always `1` or `-1` because we either:
///
/// * increment variables by `1` to avoid variable capture during substitution
/// * decrement variables by `1` when deleting lambdas after substitution
///
/// `n` starts off at `0` when substitution begins and increments every time we
/// descend into a lambda or let expression that binds a variable of the same
/// name in order to avoid shifting the bound variables by mistake.
///
pub fn shift<'i, S, T, A: Clone>(d: isize, v: V, e: &Expr<'i, S, A>) -> Expr<'i, T, A> {
use crate::Expr::*;
let V(x, n) = v;
match *e {
Const(a) => Const(a),
Var(V(x2, n2)) => {
let n3 = if x == x2 && n <= n2 { add_ui(n2, d) } else { n2 };
Var(V(x2, n3))
}
Lam(x2, ref tA, ref b) => {
let n2 = if x == x2 { n + 1 } else { n };
let tA2 = shift(d, V(x, n ), tA);
let b2 = shift(d, V(x, n2), b);
Lam(x2, bx(tA2), bx(b2))
}
Pi(x2, ref tA, ref tB) => {
let n2 = if x == x2 { n + 1 } else { n };
let tA2 = shift(d, V(x, n ), tA);
let tB2 = shift(d, V(x, n2), tB);
pi(x2, tA2, tB2)
}
App(ref f, ref a) => app(shift(d, v, f), shift(d, v, a)),
Let(f, ref mt, ref r, ref e) => {
let n2 = if x == f { n + 1 } else { n };
let e2 = shift(d, V(x, n2), e);
let mt2 = mt.as_ref().map(|t| bx(shift(d, V(x, n), t)));
let r2 = shift(d, V(x, n), r);
Let(f, mt2, bx(r2), bx(e2))
}
Annot(ref a, ref b) => shift_op2(Annot, d, v, a, b),
BuiltinType(t) => BuiltinType(t),
BuiltinValue(v) => BuiltinValue(v),
BoolLit(a) => BoolLit(a),
BoolAnd(ref a, ref b) => shift_op2(BoolAnd, d, v, a, b),
BoolOr(ref a, ref b) => shift_op2(BoolOr, d, v, a, b),
BoolEQ(ref a, ref b) => shift_op2(BoolEQ, d, v, a, b),
BoolNE(ref a, ref b) => shift_op2(BoolNE, d, v, a, b),
BoolIf(ref a, ref b, ref c) => {
BoolIf(bx(shift(d, v, a)), bx(shift(d, v, b)), bx(shift(d, v, c)))
}
NaturalLit(a) => NaturalLit(a),
NaturalPlus(ref a, ref b) => NaturalPlus(bx(shift(d, v, a)), bx(shift(d, v, b))),
NaturalTimes(ref a, ref b) => shift_op2(NaturalTimes, d, v, a, b),
IntegerLit(a) => IntegerLit(a),
DoubleLit(a) => DoubleLit(a),
TextLit(ref a) => TextLit(a.clone()),
TextAppend(ref a, ref b) => shift_op2(TextAppend, d, v, a, b),
ListLit(ref t, ref es) => {
ListLit(bx(shift(d, v, t)),
es.iter().map(|e| shift(d, v, e)).collect())
}
OptionalLit(ref t, ref es) => {
OptionalLit(bx(shift(d, v, t)),
es.iter().map(|e| shift(d, v, e)).collect())
}
Record(ref a) => Record(map_record_value(a, |val| shift(d, v, val))),
RecordLit(ref a) => RecordLit(map_record_value(a, |val| shift(d, v, val))),
Union(ref a) => Union(map_record_value(a, |val| shift(d, v, val))),
UnionLit(k, ref uv, ref a) => {
UnionLit(k,
bx(shift(d, v, uv)),
map_record_value(a, |val| shift(d, v, val)))
}
Combine(ref a, ref b) => shift_op2(Combine, d, v, a, b),
Merge(ref a, ref b, ref c) => {
Merge(bx(shift(d, v, a)), bx(shift(d, v, b)), bx(shift(d, v, c)))
}
Field(ref a, b) => Field(bx(shift(d, v, a)), b),
Note(_, ref b) => shift(d, v, b),
// The Dhall compiler enforces that all embedded values are closed expressions
// and `shift` does nothing to a closed expression
Embed(ref p) => Embed(p.clone()),
}
}
fn shift_op2<'i, S, T, A, F>(f: F,
d: isize,
v: V,
a: &Expr<'i, S, A>,
b: &Expr<'i, S, A>)
-> Expr<'i, T, A>
where F: FnOnce(Box>, Box>) -> Expr<'i, T, A>,
A: Clone
{
map_op2(f, |x| bx(shift(d, v, x)), a, b)
}
/// Substitute all occurrences of a variable with an expression
///
/// ```c
/// subst x C B ~ B[x := C]
/// ```
///
pub fn subst<'i, S, T, A>(v: V<'i>, e: &Expr<'i, S, A>, b: &Expr<'i, T, A>) -> Expr<'i, S, A>
where S: Clone,
A: Clone
{
use crate::Expr::*;
let V(x, n) = v;
match *b {
Const(a) => Const(a),
Lam(y, ref tA, ref b) => {
let n2 = if x == y { n + 1 } else { n };
let b2 = subst(V(x, n2), &shift(1, V(y, 0), e), b);
let tA2 = subst(V(x, n), e, tA);
Lam(y, bx(tA2), bx(b2))
}
Pi(y, ref tA, ref tB) => {
let n2 = if x == y { n + 1 } else { n };
let tB2 = subst(V(x, n2), &shift(1, V(y, 0), e), tB);
let tA2 = subst(V(x, n), e, tA);
pi(y, tA2, tB2)
}
App(ref f, ref a) => {
let f2 = subst(v, e, f);
let a2 = subst(v, e, a);
app(f2, a2)
}
Var(v2) => if v == v2 { e.clone() } else { Var(v2) },
Let(f, ref mt, ref r, ref b) => {
let n2 = if x == f { n + 1 } else { n };
let b2 = subst(V(x, n2), &shift(1, V(f, 0), e), b);
let mt2 = mt.as_ref().map(|t| bx(subst(V(x, n), e, t)));
let r2 = subst(V(x, n), e, r);
Let(f, mt2, bx(r2), bx(b2))
}
Annot(ref a, ref b) => subst_op2(Annot, v, e, a, b),
BuiltinType(t) => BuiltinType(t),
BuiltinValue(v) => BuiltinValue(v),
BoolLit(a) => BoolLit(a),
BoolAnd(ref a, ref b) => subst_op2(BoolAnd, v, e, a, b),
BoolOr(ref a, ref b) => subst_op2(BoolOr, v, e, a, b),
BoolEQ(ref a, ref b) => subst_op2(BoolEQ, v, e, a, b),
BoolNE(ref a, ref b) => subst_op2(BoolNE, v, e, a, b),
BoolIf(ref a, ref b, ref c) => {
BoolIf(bx(subst(v, e, a)), bx(subst(v, e, b)), bx(subst(v, e, c)))
}
NaturalLit(a) => NaturalLit(a),
NaturalPlus(ref a, ref b) => subst_op2(NaturalPlus, v, e, a, b),
NaturalTimes(ref a, ref b) => subst_op2(NaturalTimes, v, e, a, b),
IntegerLit(a) => IntegerLit(a),
DoubleLit(a) => DoubleLit(a),
TextLit(ref a) => TextLit(a.clone()),
TextAppend(ref a, ref b) => subst_op2(TextAppend, v, e, a, b),
ListLit(ref a, ref b) => {
let a2 = subst(v, e, a);
let b2 = b.iter().map(|be| subst(v, e, be)).collect();
ListLit(bx(a2), b2)
}
OptionalLit(ref a, ref b) => {
let a2 = subst(v, e, a);
let b2 = b.iter().map(|be| subst(v, e, be)).collect();
OptionalLit(bx(a2), b2)
}
Record(ref kts) => Record(map_record_value(kts, |t| subst(v, e, t))),
RecordLit(ref kvs) => RecordLit(map_record_value(kvs, |val| subst(v, e, val))),
Union(ref kts) => Union(map_record_value(kts, |t| subst(v, e, t))),
UnionLit(k, ref uv, ref kvs) => {
UnionLit(k,
bx(subst(v, e, uv)),
map_record_value(kvs, |val| subst(v, e, val)))
}
Combine(ref a, ref b) => subst_op2(Combine, v, e, a, b),
Merge(ref a, ref b, ref c) => {
Merge(bx(subst(v, e, a)), bx(subst(v, e, b)), bx(subst(v, e, c)))
}
Field(ref a, b) => Field(bx(subst(v, e, a)), b),
Note(_, ref b) => subst(v, e, b),
Embed(ref p) => Embed(p.clone()),
}
}
fn subst_op2<'i, S, T, A, F>(f: F,
v: V<'i>,
e: &Expr<'i, S, A>,
a: &Expr<'i, T, A>,
b: &Expr<'i, T, A>)
-> Expr<'i, S, A>
where F: FnOnce(Box>, Box>) -> Expr<'i, S, A>,
S: Clone,
A: Clone
{
map_op2(f, |x| bx(subst(v, e, x)), a, b)
}
/// Reduce an expression to its normal form, performing beta reduction
///
/// `normalize` does not type-check the expression. You may want to type-check
/// expressions before normalizing them since normalization can convert an
/// ill-typed expression into a well-typed expression.
///
/// However, `normalize` will not fail if the expression is ill-typed and will
/// leave ill-typed sub-expressions unevaluated.
///
pub fn normalize<'i, S, T, A>(e: &Expr<'i, S, A>) -> Expr<'i, T, A>
where S: Clone + fmt::Debug,
T: Clone + fmt::Debug,
A: Clone + fmt::Debug,
{
use crate::BuiltinValue::*;
use crate::Expr::*;
match *e {
Const(k) => Const(k),
Var(v) => Var(v),
Lam(x, ref tA, ref b) => {
let tA2 = normalize(tA);
let b2 = normalize(b);
Lam(x, bx(tA2), bx(b2))
}
Pi(x, ref tA, ref tB) => {
let tA2 = normalize(tA);
let tB2 = normalize(tB);
pi(x, tA2, tB2)
}
App(ref f, ref a) => match normalize::
(f) {
Lam(x, _A, b) => { // Beta reduce
let vx0 = V(x, 0);
let a2 = shift::( 1, vx0, a);
let b2 = subst::(vx0, &a2, &b);
let b3 = shift::(-1, vx0, &b2);
normalize(&b3)
}
f2 => match (f2, normalize::(a)) {
// fold/build fusion for `List`
(App(box BuiltinValue(ListBuild), _), App(box App(box BuiltinValue(ListFold), _), box e2)) |
(App(box BuiltinValue(ListFold), _), App(box App(box BuiltinValue(ListBuild), _), box e2)) |
// fold/build fusion for `Natural`
(BuiltinValue(NaturalBuild), App(box BuiltinValue(NaturalFold), box e2)) |
(BuiltinValue(NaturalFold), App(box BuiltinValue(NaturalBuild), box e2)) => normalize(&e2),
/*
App (App (App (App NaturalFold (NaturalLit n0)) _) succ') zero ->
normalize (go n0)
where
go !0 = zero
go !n = App succ' (go (n - 1))
App NaturalBuild k
| check -> NaturalLit n
| otherwise -> App f' a'
where
labeled =
normalize (App (App (App k Natural) "Succ") "Zero")
n = go 0 labeled
where
go !m (App (Var "Succ") e') = go (m + 1) e'
go !m (Var "Zero") = m
go !_ _ = internalError text
check = go labeled
where
go (App (Var "Succ") e') = go e'
go (Var "Zero") = True
go _ = False
*/
(BuiltinValue(NaturalIsZero), NaturalLit(n)) => BoolLit(n == 0),
(BuiltinValue(NaturalEven), NaturalLit(n)) => BoolLit(n % 2 == 0),
(BuiltinValue(NaturalOdd), NaturalLit(n)) => BoolLit(n % 2 != 0),
(BuiltinValue(NaturalShow), NaturalLit(n)) => TextLit(n.to_string()),
(App(f@box BuiltinValue(ListBuild), box t), k) => {
let labeled =
normalize::<_, T, _>(&app(app(app(k.clone(), app(
BuiltinType(self::BuiltinType::List), t.clone())), "Cons"), "Nil"));
fn list_to_vector<'i, S, A>(v: &mut Vec>, e: Expr<'i, S, A>)
where S: Clone, A: Clone
{
match e {
App(box App(box Var(V("Cons", _)), box x), box e2) => {
v.push(x);
list_to_vector(v, e2)
}
Var(V("Nil", _)) => {}
_ => panic!("internalError list_to_vector"),
}
}
fn check(e: &Expr) -> bool {
match *e {
App(box App(box Var(V("Cons", _)), _), ref e2) => check(e2),
Var(V("Nil", _)) => true,
_ => false,
}
}
if check(&labeled) {
let mut v = vec![];
list_to_vector(&mut v, labeled);
ListLit(bx(t), v)
} else {
app(App(f, bx(t)), k)
}
}
(App(box App(box App(box App(box BuiltinValue(ListFold), _), box ListLit(_, xs)), _), cons), nil) => {
let e2: Expr<_, _> = xs.into_iter().rev().fold(nil, |y, ys| // foldr
App(bx(App(cons.clone(), bx(y))), bx(ys))
);
normalize(&e2)
}
(App(f, x_), ListLit(t, ys)) => match *f {
BuiltinValue(ListLength) =>
NaturalLit(ys.len()),
BuiltinValue(ListHead) =>
normalize(&OptionalLit(t, ys.into_iter().take(1).collect())),
BuiltinValue(ListLast) =>
normalize(&OptionalLit(t, ys.into_iter().last().into_iter().collect())),
BuiltinValue(ListReverse) => {
let mut xs = ys;
xs.reverse();
normalize(&ListLit(t, xs))
}
_ => app(App(f, x_), ListLit(t, ys)),
},
/*
App (App ListIndexed _) (ListLit t xs) ->
normalize (ListLit t' (fmap adapt (Data.Vector.indexed xs)))
where
t' = Record (Data.Map.fromList kts)
where
kts = [ ("index", Natural)
, ("value", t)
]
adapt (n, x) = RecordLit (Data.Map.fromList kvs)
where
kvs = [ ("index", NaturalLit (fromIntegral n))
, ("value", x)
]
App (App (App (App (App OptionalFold _) (OptionalLit _ xs)) _) just) nothing ->
normalize (maybe nothing just' (toMaybe xs))
where
just' y = App just y
toMaybe = Data.Maybe.listToMaybe . Data.Vector.toList
*/
(f2, a2) => app(f2, a2),
}
},
Let(f, _, ref r, ref b) => {
let r2 = shift::<_, S, _>( 1, V(f, 0), r);
let b2 = subst(V(f, 0), &r2, b);
let b3 = shift::<_, T, _>(-1, V(f, 0), &b2);
normalize(&b3)
}
Annot(ref x, _) => normalize(x),
BuiltinType(t) => BuiltinType(t),
BuiltinValue(v) => BuiltinValue(v),
BoolLit(b) => BoolLit(b),
BoolAnd(ref x, ref y) => {
with_binop(BoolAnd, Expr::bool_lit,
|xn, yn| BoolLit(xn && yn),
normalize(x), normalize(y))
}
BoolOr(ref x, ref y) => {
with_binop(BoolOr, Expr::bool_lit,
|xn, yn| BoolLit(xn || yn),
normalize(x), normalize(y))
}
BoolEQ(ref x, ref y) => {
with_binop(BoolEQ, Expr::bool_lit,
|xn, yn| BoolLit(xn == yn),
normalize(x), normalize(y))
}
BoolNE(ref x, ref y) => {
with_binop(BoolNE, Expr::bool_lit,
|xn, yn| BoolLit(xn != yn),
normalize(x), normalize(y))
}
BoolIf(ref b, ref t, ref f) => match normalize(b) {
BoolLit(true) => normalize(t),
BoolLit(false) => normalize(f),
b2 => BoolIf(bx(b2), bx(normalize(t)), bx(normalize(f))),
},
NaturalLit(n) => NaturalLit(n),
NaturalPlus(ref x, ref y) => {
with_binop(NaturalPlus, Expr::natural_lit,
|xn, yn| NaturalLit(xn + yn),
normalize(x), normalize(y))
}
NaturalTimes(ref x, ref y) => {
with_binop(NaturalTimes, Expr::natural_lit,
|xn, yn| NaturalLit(xn * yn),
normalize(x), normalize(y))
}
IntegerLit(n) => IntegerLit(n),
DoubleLit(n) => DoubleLit(n),
TextLit(ref t) => TextLit(t.clone()),
TextAppend(ref x, ref y) => {
with_binop(TextAppend, Expr::text_lit,
|xt, yt| TextLit(xt + &yt),
normalize(x), normalize(y))
}
ListLit(ref t, ref es) => {
let t2 = normalize(t);
let es2 = es.iter().map(normalize).collect();
ListLit(bx(t2), es2)
}
OptionalLit(ref t, ref es) => {
let t2 = normalize(t);
let es2 = es.iter().map(normalize).collect();
OptionalLit(bx(t2), es2)
}
Record(ref kts) => Record(map_record_value(kts, normalize)),
RecordLit(ref kvs) => RecordLit(map_record_value(kvs, normalize)),
Union(ref kts) => Union(map_record_value(kts, normalize)),
UnionLit(k, ref v, ref kvs) => UnionLit(k, bx(normalize(v)), map_record_value(kvs, normalize)),
Combine(ref _x0, ref _y0) => unimplemented!(),
Merge(ref _x, ref _y, ref _t) => unimplemented!(),
Field(ref r, x) => match normalize(r) {
RecordLit(kvs) => match kvs.get(x) {
Some(r2) => normalize(r2),
None => Field(bx(RecordLit(map_record_value(&kvs, normalize))), x),
},
r2 => Field(bx(r2), x),
},
Note(_, ref e) => normalize(e),
Embed(ref a) => Embed(a.clone()),
}
}
fn with_binop(op: Op, get: Get, set: Set, x: T, y: T) -> T
where Get: Fn(&T) -> Option,
Set: FnOnce(U, U) -> T,
Op: FnOnce(Box, Box) -> T,
{
if let (Some(xv), Some(yv)) = (get(&x), get(&y)) {
set(xv, yv)
} else {
op(bx(x), bx(y))
}
}