use std::collections::HashMap; use dhall_syntax::{ BinOp, Builtin, ExprF, InterpolatedText, InterpolatedTextContents, Label, NaiveDouble, }; use crate::core::value::{Value, VoVF}; use crate::core::valuef::ValueF; use crate::core::var::{Shift, Subst}; use crate::phase::Normalized; // Small helper enum to avoid repetition enum Ret<'a> { ValueF(ValueF), Value(Value), ValueRef(&'a Value), Expr(ExprF), } impl<'a> Ret<'a> { fn into_vovf_whnf(self) -> VoVF { match self { Ret::ValueF(v) => v.into_vovf_whnf(), Ret::Value(v) => v.into_vovf(), Ret::ValueRef(v) => v.clone().into_vovf(), Ret::Expr(expr) => ValueF::PartialExpr(expr).into_vovf_whnf(), } } } // Ad-hoc macro to help construct closures macro_rules! make_closure { (#$var:ident) => { $var.clone() }; (var($var:ident, $n:expr)) => {{ let var = crate::core::var::AlphaVar::from_var_and_alpha( Label::from(stringify!($var)).into(), $n ); ValueF::Var(var).into_value_untyped() }}; // Warning: assumes that $ty, as a dhall value, has type `Type` (λ($var:ident : $($ty:tt)*) -> $($rest:tt)*) => { ValueF::Lam( Label::from(stringify!($var)).into(), make_closure!($($ty)*), make_closure!($($rest)*), ).into_value_untyped() }; (Natural) => { Value::from_builtin(Builtin::Natural) }; (List $($rest:tt)*) => { Value::from_builtin(Builtin::List) .app(make_closure!($($rest)*)) }; (Some($($rest:tt)*)) => { ValueF::NEOptionalLit(make_closure!($($rest)*)) .into_value_untyped() }; (1 + $($rest:tt)*) => { ValueF::PartialExpr(ExprF::BinOp( dhall_syntax::BinOp::NaturalPlus, make_closure!($($rest)*), Value::from_valuef_and_type( ValueF::NaturalLit(1), make_closure!(Natural) ), )).into_value_with_type( make_closure!(Natural) ) }; ([ $($head:tt)* ] # $($tail:tt)*) => { ValueF::PartialExpr(ExprF::BinOp( dhall_syntax::BinOp::ListAppend, ValueF::NEListLit(vec![make_closure!($($head)*)]) .into_value_untyped(), make_closure!($($tail)*), )).into_value_untyped() }; } #[allow(clippy::cognitive_complexity)] pub(crate) fn apply_builtin(b: Builtin, args: Vec) -> VoVF { use dhall_syntax::Builtin::*; use ValueF::*; // Return Ok((unconsumed args, returned value)), or Err(()) if value could not be produced. let ret = match (b, args.as_slice()) { (OptionalNone, [t, r..]) => { Ok((r, Ret::ValueF(EmptyOptionalLit(t.clone())))) } (NaturalIsZero, [n, r..]) => match &*n.as_whnf() { NaturalLit(n) => Ok((r, Ret::ValueF(BoolLit(*n == 0)))), _ => Err(()), }, (NaturalEven, [n, r..]) => match &*n.as_whnf() { NaturalLit(n) => Ok((r, Ret::ValueF(BoolLit(*n % 2 == 0)))), _ => Err(()), }, (NaturalOdd, [n, r..]) => match &*n.as_whnf() { NaturalLit(n) => Ok((r, Ret::ValueF(BoolLit(*n % 2 != 0)))), _ => Err(()), }, (NaturalToInteger, [n, r..]) => match &*n.as_whnf() { NaturalLit(n) => Ok((r, Ret::ValueF(IntegerLit(*n as isize)))), _ => Err(()), }, (NaturalShow, [n, r..]) => match &*n.as_whnf() { NaturalLit(n) => Ok(( r, Ret::ValueF(TextLit(vec![InterpolatedTextContents::Text( n.to_string(), )])), )), _ => Err(()), }, (NaturalSubtract, [a, b, r..]) => { match (&*a.as_whnf(), &*b.as_whnf()) { (NaturalLit(a), NaturalLit(b)) => Ok(( r, Ret::ValueF(NaturalLit(if b > a { b - a } else { 0 })), )), (NaturalLit(0), _) => Ok((r, Ret::ValueRef(b))), (_, NaturalLit(0)) => Ok((r, Ret::ValueF(NaturalLit(0)))), _ if a == b => Ok((r, Ret::ValueF(NaturalLit(0)))), _ => Err(()), } } (IntegerShow, [n, r..]) => match &*n.as_whnf() { IntegerLit(n) => { let s = if *n < 0 { n.to_string() } else { format!("+{}", n) }; Ok(( r, Ret::ValueF(TextLit(vec![InterpolatedTextContents::Text( s, )])), )) } _ => Err(()), }, (IntegerToDouble, [n, r..]) => match &*n.as_whnf() { IntegerLit(n) => { Ok((r, Ret::ValueF(DoubleLit(NaiveDouble::from(*n as f64))))) } _ => Err(()), }, (DoubleShow, [n, r..]) => match &*n.as_whnf() { DoubleLit(n) => Ok(( r, Ret::ValueF(TextLit(vec![InterpolatedTextContents::Text( n.to_string(), )])), )), _ => Err(()), }, (TextShow, [v, r..]) => match &*v.as_whnf() { TextLit(elts) => { match elts.as_slice() { // Empty string literal. [] => { // Printing InterpolatedText takes care of all the escaping let txt: InterpolatedText = std::iter::empty().collect(); let s = txt.to_string(); Ok(( r, Ret::ValueF(TextLit(vec![ InterpolatedTextContents::Text(s), ])), )) } // If there are no interpolations (invariants ensure that when there are no // interpolations, there is a single Text item) in the literal. [InterpolatedTextContents::Text(s)] => { // Printing InterpolatedText takes care of all the escaping let txt: InterpolatedText = std::iter::once(InterpolatedTextContents::Text( s.clone(), )) .collect(); let s = txt.to_string(); Ok(( r, Ret::ValueF(TextLit(vec![ InterpolatedTextContents::Text(s), ])), )) } _ => Err(()), } } _ => Err(()), }, (ListLength, [_, l, r..]) => match &*l.as_whnf() { EmptyListLit(_) => Ok((r, Ret::ValueF(NaturalLit(0)))), NEListLit(xs) => Ok((r, Ret::ValueF(NaturalLit(xs.len())))), _ => Err(()), }, (ListHead, [_, l, r..]) => match &*l.as_whnf() { EmptyListLit(n) => { Ok((r, Ret::ValueF(EmptyOptionalLit(n.clone())))) } NEListLit(xs) => Ok(( r, Ret::ValueF(NEOptionalLit(xs.iter().next().unwrap().clone())), )), _ => Err(()), }, (ListLast, [_, l, r..]) => match &*l.as_whnf() { EmptyListLit(n) => { Ok((r, Ret::ValueF(EmptyOptionalLit(n.clone())))) } NEListLit(xs) => Ok(( r, Ret::ValueF(NEOptionalLit( xs.iter().rev().next().unwrap().clone(), )), )), _ => Err(()), }, (ListReverse, [_, l, r..]) => match &*l.as_whnf() { EmptyListLit(n) => Ok((r, Ret::ValueF(EmptyListLit(n.clone())))), NEListLit(xs) => Ok(( r, Ret::ValueF(NEListLit(xs.iter().rev().cloned().collect())), )), _ => Err(()), }, (ListIndexed, [_, l, r..]) => match &*l.as_whnf() { EmptyListLit(t) => { let mut kts = HashMap::new(); kts.insert("index".into(), Value::from_builtin(Natural)); kts.insert("value".into(), t.clone()); Ok(( r, Ret::ValueF(EmptyListLit(Value::from_valuef_untyped( RecordType(kts), ))), )) } NEListLit(xs) => { let xs = xs .iter() .enumerate() .map(|(i, e)| { let i = NaturalLit(i); let mut kvs = HashMap::new(); kvs.insert( "index".into(), Value::from_valuef_untyped(i), ); kvs.insert("value".into(), e.clone()); Value::from_valuef_untyped(RecordLit(kvs)) }) .collect(); Ok((r, Ret::ValueF(NEListLit(xs)))) } _ => Err(()), }, (ListBuild, [t, f, r..]) => match &*f.as_whnf() { // fold/build fusion ValueF::AppliedBuiltin(ListFold, args) => { if args.len() >= 2 { Ok((r, Ret::Value(args[1].clone()))) } else { // Do we really need to handle this case ? unimplemented!() } } _ => { let list_t = Value::from_builtin(List).app(t.clone()); Ok(( r, Ret::Value( f.app(list_t.clone()) .app({ // Move `t` under new `x` variable let t1 = t.under_binder(Label::from("x")); make_closure!( λ(x : #t) -> λ(xs : List #t1) -> [ var(x, 1) ] # var(xs, 0) ) }) .app( EmptyListLit(t.clone()) .into_value_with_type(list_t), ), ), )) } }, (ListFold, [_, l, _, cons, nil, r..]) => match &*l.as_whnf() { EmptyListLit(_) => Ok((r, Ret::ValueRef(nil))), NEListLit(xs) => { let mut v = nil.clone(); for x in xs.iter().cloned().rev() { v = cons.app(x).app(v); } Ok((r, Ret::Value(v))) } _ => Err(()), }, (OptionalBuild, [t, f, r..]) => match &*f.as_whnf() { // fold/build fusion ValueF::AppliedBuiltin(OptionalFold, args) => { if args.len() >= 2 { Ok((r, Ret::Value(args[1].clone()))) } else { // Do we really need to handle this case ? unimplemented!() } } _ => { let optional_t = Value::from_builtin(Optional).app(t.clone()); Ok(( r, Ret::Value( f.app(optional_t.clone()) .app(make_closure!(λ(x: #t) -> Some(var(x, 0)))) .app( EmptyOptionalLit(t.clone()) .into_value_with_type(optional_t), ), ), )) } }, (OptionalFold, [_, v, _, just, nothing, r..]) => match &*v.as_whnf() { EmptyOptionalLit(_) => Ok((r, Ret::ValueRef(nothing))), NEOptionalLit(x) => Ok((r, Ret::Value(just.app(x.clone())))), _ => Err(()), }, (NaturalBuild, [f, r..]) => match &*f.as_whnf() { // fold/build fusion ValueF::AppliedBuiltin(NaturalFold, args) => { if !args.is_empty() { Ok((r, Ret::Value(args[0].clone()))) } else { // Do we really need to handle this case ? unimplemented!() } } _ => Ok(( r, Ret::Value( f.app(Value::from_builtin(Natural)) .app(make_closure!(λ(x : Natural) -> 1 + var(x, 0))) .app(NaturalLit(0).into_value_with_type( Value::from_builtin(Natural), )), ), )), }, (NaturalFold, [n, t, succ, zero, r..]) => match &*n.as_whnf() { NaturalLit(0) => Ok((r, Ret::ValueRef(zero))), NaturalLit(n) => { let fold = Value::from_builtin(NaturalFold) .app( NaturalLit(n - 1) .into_value_with_type(Value::from_builtin(Natural)), ) .app(t.clone()) .app(succ.clone()) .app(zero.clone()); Ok((r, Ret::Value(succ.app(fold)))) } _ => Err(()), }, _ => Err(()), }; match ret { Ok((unconsumed_args, ret)) => { let mut v = ret.into_vovf_whnf(); let n_consumed_args = args.len() - unconsumed_args.len(); for x in args.into_iter().skip(n_consumed_args) { v = v.app(x); } v } Err(()) => AppliedBuiltin(b, args).into_vovf_whnf(), } } pub(crate) fn apply_any(f: Value, a: Value) -> VoVF { let fallback = |f: Value, a: Value| { ValueF::PartialExpr(ExprF::App(f, a)).into_vovf_whnf() }; let f_borrow = f.as_whnf(); match &*f_borrow { ValueF::Lam(x, _, e) => e.subst_shift(&x.into(), &a).into_vovf(), ValueF::AppliedBuiltin(b, args) => { use std::iter::once; let args = args.iter().cloned().chain(once(a.clone())).collect(); apply_builtin(*b, args) } ValueF::UnionConstructor(l, kts) => { ValueF::UnionLit(l.clone(), a, kts.clone()).into_vovf_whnf() } _ => { drop(f_borrow); fallback(f, a) } } } pub(crate) fn squash_textlit( elts: impl Iterator>, ) -> Vec> { use std::mem::replace; use InterpolatedTextContents::{Expr, Text}; fn inner( elts: impl Iterator>, crnt_str: &mut String, ret: &mut Vec>, ) { for contents in elts { match contents { Text(s) => crnt_str.push_str(&s), Expr(e) => { let e_borrow = e.as_whnf(); match &*e_borrow { ValueF::TextLit(elts2) => { inner(elts2.iter().cloned(), crnt_str, ret) } _ => { drop(e_borrow); if !crnt_str.is_empty() { ret.push(Text(replace(crnt_str, String::new()))) } ret.push(Expr(e.clone())) } } } } } } let mut crnt_str = String::new(); let mut ret = Vec::new(); inner(elts, &mut crnt_str, &mut ret); if !crnt_str.is_empty() { ret.push(Text(replace(&mut crnt_str, String::new()))) } ret } /// Performs an intersection of two HashMaps. /// /// # Arguments /// /// * `f` - Will compute the final value from the intersecting /// key and the values from both maps. /// /// # Description /// /// If the key is present in both maps then the final value for /// that key is computed via the `f` function. /// /// The final map will contain the shared keys from the /// two input maps with the final computed value from `f`. pub(crate) fn intersection_with_key( mut f: impl FnMut(&K, &T, &U) -> V, map1: &HashMap, map2: &HashMap, ) -> HashMap where K: std::hash::Hash + Eq + Clone, { let mut kvs = HashMap::new(); for (k, t) in map1 { // Only insert in the final map if the key exists in both if let Some(u) = map2.get(k) { kvs.insert(k.clone(), f(k, t, u)); } } kvs } pub(crate) fn merge_maps( map1: &HashMap, map2: &HashMap, mut f: impl FnMut(&V, &V) -> V, ) -> HashMap where K: std::hash::Hash + Eq + Clone, V: Clone, { let mut kvs = HashMap::new(); for (x, v2) in map2 { let newv = if let Some(v1) = map1.get(x) { f(v1, v2) } else { v2.clone() }; kvs.insert(x.clone(), newv); } for (x, v1) in map1 { // Insert only if key not already present kvs.entry(x.clone()).or_insert_with(|| v1.clone()); } kvs } fn apply_binop<'a>(o: BinOp, x: &'a Value, y: &'a Value) -> Option> { use BinOp::{ BoolAnd, BoolEQ, BoolNE, BoolOr, Equivalence, ListAppend, NaturalPlus, NaturalTimes, RecursiveRecordMerge, RecursiveRecordTypeMerge, RightBiasedRecordMerge, TextAppend, }; use ValueF::{ BoolLit, EmptyListLit, NEListLit, NaturalLit, RecordLit, RecordType, TextLit, }; let x_borrow = x.as_whnf(); let y_borrow = y.as_whnf(); Some(match (o, &*x_borrow, &*y_borrow) { (BoolAnd, BoolLit(true), _) => Ret::ValueRef(y), (BoolAnd, _, BoolLit(true)) => Ret::ValueRef(x), (BoolAnd, BoolLit(false), _) => Ret::ValueF(BoolLit(false)), (BoolAnd, _, BoolLit(false)) => Ret::ValueF(BoolLit(false)), (BoolAnd, _, _) if x == y => Ret::ValueRef(x), (BoolOr, BoolLit(true), _) => Ret::ValueF(BoolLit(true)), (BoolOr, _, BoolLit(true)) => Ret::ValueF(BoolLit(true)), (BoolOr, BoolLit(false), _) => Ret::ValueRef(y), (BoolOr, _, BoolLit(false)) => Ret::ValueRef(x), (BoolOr, _, _) if x == y => Ret::ValueRef(x), (BoolEQ, BoolLit(true), _) => Ret::ValueRef(y), (BoolEQ, _, BoolLit(true)) => Ret::ValueRef(x), (BoolEQ, BoolLit(x), BoolLit(y)) => Ret::ValueF(BoolLit(x == y)), (BoolEQ, _, _) if x == y => Ret::ValueF(BoolLit(true)), (BoolNE, BoolLit(false), _) => Ret::ValueRef(y), (BoolNE, _, BoolLit(false)) => Ret::ValueRef(x), (BoolNE, BoolLit(x), BoolLit(y)) => Ret::ValueF(BoolLit(x != y)), (BoolNE, _, _) if x == y => Ret::ValueF(BoolLit(false)), (NaturalPlus, NaturalLit(0), _) => Ret::ValueRef(y), (NaturalPlus, _, NaturalLit(0)) => Ret::ValueRef(x), (NaturalPlus, NaturalLit(x), NaturalLit(y)) => { Ret::ValueF(NaturalLit(x + y)) } (NaturalTimes, NaturalLit(0), _) => Ret::ValueF(NaturalLit(0)), (NaturalTimes, _, NaturalLit(0)) => Ret::ValueF(NaturalLit(0)), (NaturalTimes, NaturalLit(1), _) => Ret::ValueRef(y), (NaturalTimes, _, NaturalLit(1)) => Ret::ValueRef(x), (NaturalTimes, NaturalLit(x), NaturalLit(y)) => { Ret::ValueF(NaturalLit(x * y)) } (ListAppend, EmptyListLit(_), _) => Ret::ValueRef(y), (ListAppend, _, EmptyListLit(_)) => Ret::ValueRef(x), (ListAppend, NEListLit(xs), NEListLit(ys)) => Ret::ValueF(NEListLit( xs.iter().chain(ys.iter()).cloned().collect(), )), (TextAppend, TextLit(x), _) if x.is_empty() => Ret::ValueRef(y), (TextAppend, _, TextLit(y)) if y.is_empty() => Ret::ValueRef(x), (TextAppend, TextLit(x), TextLit(y)) => Ret::ValueF(TextLit( squash_textlit(x.iter().chain(y.iter()).cloned()), )), (TextAppend, TextLit(x), _) => { use std::iter::once; let y = InterpolatedTextContents::Expr(y.clone()); Ret::ValueF(TextLit(squash_textlit( x.iter().cloned().chain(once(y)), ))) } (TextAppend, _, TextLit(y)) => { use std::iter::once; let x = InterpolatedTextContents::Expr(x.clone()); Ret::ValueF(TextLit(squash_textlit( once(x).chain(y.iter().cloned()), ))) } (RightBiasedRecordMerge, _, RecordLit(kvs)) if kvs.is_empty() => { Ret::ValueRef(x) } (RightBiasedRecordMerge, RecordLit(kvs), _) if kvs.is_empty() => { Ret::ValueRef(y) } (RightBiasedRecordMerge, RecordLit(kvs1), RecordLit(kvs2)) => { let mut kvs = kvs2.clone(); for (x, v) in kvs1 { // Insert only if key not already present kvs.entry(x.clone()).or_insert_with(|| v.clone()); } Ret::ValueF(RecordLit(kvs)) } (RecursiveRecordMerge, _, RecordLit(kvs)) if kvs.is_empty() => { Ret::ValueRef(x) } (RecursiveRecordMerge, RecordLit(kvs), _) if kvs.is_empty() => { Ret::ValueRef(y) } (RecursiveRecordMerge, RecordLit(kvs1), RecordLit(kvs2)) => { let kvs = merge_maps(kvs1, kvs2, |v1, v2| { Value::from_valuef_untyped(ValueF::PartialExpr(ExprF::BinOp( RecursiveRecordMerge, v1.clone(), v2.clone(), ))) }); Ret::ValueF(RecordLit(kvs)) } (RecursiveRecordTypeMerge, _, RecordType(kvs)) if kvs.is_empty() => { Ret::ValueRef(x) } (RecursiveRecordTypeMerge, RecordType(kvs), _) if kvs.is_empty() => { Ret::ValueRef(y) } (RecursiveRecordTypeMerge, RecordType(kvs1), RecordType(kvs2)) => { let kvs = merge_maps(kvs1, kvs2, |v1, v2| { Value::from_valuef_untyped(ValueF::PartialExpr(ExprF::BinOp( RecursiveRecordTypeMerge, v1.clone(), v2.clone(), ))) }); Ret::ValueF(RecordType(kvs)) } (Equivalence, _, _) => { Ret::ValueF(ValueF::Equivalence(x.clone(), y.clone())) } _ => return None, }) } pub(crate) fn normalize_one_layer(expr: ExprF) -> VoVF { use ValueF::{ AppliedBuiltin, BoolLit, DoubleLit, EmptyListLit, IntegerLit, Lam, NEListLit, NEOptionalLit, NaturalLit, Pi, RecordLit, RecordType, TextLit, UnionConstructor, UnionLit, UnionType, }; let ret = match expr { ExprF::Import(_) => unreachable!( "There should remain no imports in a resolved expression" ), ExprF::Embed(_) => unreachable!(), ExprF::Var(_) => unreachable!(), ExprF::Annot(x, _) => Ret::Value(x), ExprF::Assert(_) => Ret::Expr(expr), ExprF::Lam(x, t, e) => Ret::ValueF(Lam(x.into(), t, e)), ExprF::Pi(x, t, e) => Ret::ValueF(Pi(x.into(), t, e)), ExprF::Let(x, _, v, b) => Ret::Value(b.subst_shift(&x.into(), &v)), ExprF::App(v, a) => Ret::Value(v.app(a)), ExprF::Builtin(b) => Ret::ValueF(ValueF::from_builtin(b)), ExprF::Const(c) => Ret::ValueF(ValueF::Const(c)), ExprF::BoolLit(b) => Ret::ValueF(BoolLit(b)), ExprF::NaturalLit(n) => Ret::ValueF(NaturalLit(n)), ExprF::IntegerLit(n) => Ret::ValueF(IntegerLit(n)), ExprF::DoubleLit(n) => Ret::ValueF(DoubleLit(n)), ExprF::SomeLit(e) => Ret::ValueF(NEOptionalLit(e)), ExprF::EmptyListLit(ref t) => { // Check if the type is of the form `List x` let t_borrow = t.as_whnf(); match &*t_borrow { AppliedBuiltin(Builtin::List, args) if args.len() == 1 => { Ret::ValueF(EmptyListLit(args[0].clone())) } _ => { drop(t_borrow); Ret::Expr(expr) } } } ExprF::NEListLit(elts) => { Ret::ValueF(NEListLit(elts.into_iter().collect())) } ExprF::RecordLit(kvs) => { Ret::ValueF(RecordLit(kvs.into_iter().collect())) } ExprF::RecordType(kts) => { Ret::ValueF(RecordType(kts.into_iter().collect())) } ExprF::UnionType(kts) => { Ret::ValueF(UnionType(kts.into_iter().collect())) } ExprF::TextLit(elts) => { use InterpolatedTextContents::Expr; let elts: Vec<_> = squash_textlit(elts.into_iter()); // Simplify bare interpolation if let [Expr(th)] = elts.as_slice() { Ret::Value(th.clone()) } else { Ret::ValueF(TextLit(elts)) } } ExprF::BoolIf(ref b, ref e1, ref e2) => { let b_borrow = b.as_whnf(); match &*b_borrow { BoolLit(true) => Ret::ValueRef(e1), BoolLit(false) => Ret::ValueRef(e2), _ => { let e1_borrow = e1.as_whnf(); let e2_borrow = e2.as_whnf(); match (&*e1_borrow, &*e2_borrow) { // Simplify `if b then True else False` (BoolLit(true), BoolLit(false)) => Ret::ValueRef(b), _ if e1 == e2 => Ret::ValueRef(e1), _ => { drop(b_borrow); drop(e1_borrow); drop(e2_borrow); Ret::Expr(expr) } } } } } ExprF::BinOp(o, ref x, ref y) => match apply_binop(o, x, y) { Some(ret) => ret, None => Ret::Expr(expr), }, ExprF::Projection(_, ref ls) if ls.is_empty() => { Ret::ValueF(RecordLit(HashMap::new())) } ExprF::Projection(ref v, ref ls) => { let v_borrow = v.as_whnf(); match &*v_borrow { RecordLit(kvs) => Ret::ValueF(RecordLit( ls.iter() .filter_map(|l| { kvs.get(l).map(|x| (l.clone(), x.clone())) }) .collect(), )), _ => { drop(v_borrow); Ret::Expr(expr) } } } ExprF::Field(ref v, ref l) => { let v_borrow = v.as_whnf(); match &*v_borrow { RecordLit(kvs) => match kvs.get(l) { Some(r) => Ret::Value(r.clone()), None => { drop(v_borrow); Ret::Expr(expr) } }, UnionType(kts) => { Ret::ValueF(UnionConstructor(l.clone(), kts.clone())) } _ => { drop(v_borrow); Ret::Expr(expr) } } } ExprF::Merge(ref handlers, ref variant, _) => { let handlers_borrow = handlers.as_whnf(); let variant_borrow = variant.as_whnf(); match (&*handlers_borrow, &*variant_borrow) { (RecordLit(kvs), UnionConstructor(l, _)) => match kvs.get(l) { Some(h) => Ret::Value(h.clone()), None => { drop(handlers_borrow); drop(variant_borrow); Ret::Expr(expr) } }, (RecordLit(kvs), UnionLit(l, v, _)) => match kvs.get(l) { Some(h) => Ret::Value(h.app(v.clone())), None => { drop(handlers_borrow); drop(variant_borrow); Ret::Expr(expr) } }, _ => { drop(handlers_borrow); drop(variant_borrow); Ret::Expr(expr) } } } }; ret.into_vovf_whnf() } /// Normalize a ValueF into WHNF pub(crate) fn normalize_whnf(v: ValueF) -> VoVF { match v { ValueF::AppliedBuiltin(b, args) => apply_builtin(b, args), ValueF::PartialExpr(e) => normalize_one_layer(e), ValueF::TextLit(elts) => { ValueF::TextLit(squash_textlit(elts.into_iter())).into_vovf_whnf() } // All other cases are already in WHNF v => v.into_vovf_whnf(), } }