import «AvlVerification» namespace Tree variable {T: Type} open avl_verification -- Otherwise, Lean cannot prove termination by itself. @[reducible] def AVLTree (U: Type) := Option (AVLNode U) def AVLTree.nil: AVLTree T := none def AVLTree.val (t: AVLTree T): Option T := match t with | none => none | some (AVLNode.mk x _ _) => some x def AVLTree.left (t: AVLTree T): AVLTree T := match t with | none => none | some (AVLNode.mk _ left _) => left def AVLTree.right (t: AVLTree T): AVLTree T := match t with | none => none | some (AVLNode.mk _ _ right) => right def AVLNode.left (t: AVLNode T): AVLTree T := match t with | AVLNode.mk _ left _ => left def AVLNode.right (t: AVLNode T): AVLTree T := match t with | AVLNode.mk _ _ right => right def AVLNode.val (t: AVLNode T): T := match t with | AVLNode.mk x _ _ => x mutual def AVLTree.height_node (tree: AVLNode T): Nat := match tree with | AVLNode.mk y left right => 1 + AVLTree.height left + AVLTree.height right def AVLTree.height (tree: AVLTree T): Nat := match tree with | none => 0 | some n => 1 + AVLTree.height_node n end def AVLTreeSet.nil: AVLTreeSet T := { root := AVLTree.nil } -- Automatic synthesization of this seems possible at the Lean level? instance: Inhabited (AVLTree T) where default := AVLTree.nil instance: Inhabited (AVLTreeSet T) where default := AVLTreeSet.nil instance: Coe (Option (AVLNode T)) (AVLTree T) where coe x := x -- TODO: ideally, it would be nice if we could generalize -- this to any `BinaryTree` typeclass. def AVLTree.mem (tree: AVLTree T) (x: T) := match tree with | none => False | some (AVLNode.mk y left right) => x = y ∨ AVLTree.mem left x ∨ AVLTree.mem right x @[simp] def AVLTree.mem_none: AVLTree.mem none = ({}: Set T) := rfl @[simp] def AVLTree.mem_some {x: T} {left right: AVLTree T}: AVLTree.mem (some (AVLNode.mk x left right)) = (({x}: Set T) ∪ AVLTree.mem left ∪ AVLTree.mem right) := by ext y rw [AVLTree.mem] simp [Set.insert_union] simp [Set.insert_def, Set.setOf_set, Set.mem_def, Set.union_def] -- TODO(reinforcement): ∪ is actually disjoint if we prove this is a binary search tree. def AVLTree.set (t: AVLTree T): Set T := _root_.setOf (AVLTree.mem t) @[simp] def AVLTree.set_some {x: T} {left right: AVLTree T}: AVLTree.set (some (AVLNode.mk x left right)) = {x} ∪ AVLTree.set left ∪ AVLTree.set right := by simp [set, setOf] end Tree