import AvlVerification.Tree namespace BST open Primitives (Result) open avl_verification (AVLNode Ordering) open Tree (AVLTree AVLNode.left AVLNode.right AVLNode.val) inductive ForallNode (p: T -> Prop): AVLTree T -> Prop | none : ForallNode p none | some (a: T) (left: AVLTree T) (right: AVLTree T) : ForallNode p left -> p a -> ForallNode p right -> ForallNode p (some (AVLNode.mk a left right)) theorem ForallNode.left {p: T -> Prop} {t: AVLTree T}: ForallNode p t -> ForallNode p t.left := by intro Hpt cases Hpt with | none => simp [AVLTree.left, ForallNode.none] | some a left right f_pleft f_pa f_pright => simp [AVLTree.left, f_pleft] theorem ForallNode.right {p: T -> Prop} {t: AVLTree T}: ForallNode p t -> ForallNode p t.right := by intro Hpt cases Hpt with | none => simp [AVLTree.right, ForallNode.none] | some a left right f_pleft f_pa f_pright => simp [AVLTree.right, f_pright] theorem ForallNode.label {a: T} {p: T -> Prop} {left right: AVLTree T}: ForallNode p (AVLNode.mk a left right) -> p a := by intro Hpt cases Hpt with | some a left right f_pleft f_pa f_pright => exact f_pa -- This is the binary search invariant. inductive Invariant [LT T]: AVLTree T -> Prop | none : Invariant none | some (a: T) (left: AVLTree T) (right: AVLTree T) : ForallNode (fun v => v < a) left -> ForallNode (fun v => a < v) right -> Invariant left -> Invariant right -> Invariant (some (AVLNode.mk a left right)) @[simp] theorem singleton_bst [LT T] {a: T}: Invariant (some (AVLNode.mk a none none)) := by apply Invariant.some all_goals simp [ForallNode.none, Invariant.none] theorem left [LT T] {t: AVLTree T}: Invariant t -> Invariant t.left := by intro H induction H with | none => exact Invariant.none | some _ _ _ _ _ _ _ _ _ => simp [AVLTree.left]; assumption theorem right [LT T] {t: AVLTree T}: Invariant t -> Invariant t.right := by intro H induction H with | none => exact Invariant.none | some _ _ _ _ _ _ _ _ _ => simp [AVLTree.right]; assumption end BST