1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
|
(** The generic extraction *)
(* Turn the whole module into a functor: it is very annoying to carry the
the formatter everywhere...
*)
open Utils
open Pure
open PureUtils
open TranslateCore
open ExtractBase
open StringUtils
open Config
module F = Format
(** Small helper to compute the name of an int type *)
let int_name (int_ty : integer_type) =
let isize, usize, i_format, u_format =
match !backend with
| FStar | Coq ->
("isize", "usize", format_of_string "i%d", format_of_string "u%d")
| Lean ->
("ISize", "USize", format_of_string "Int%d", format_of_string "UInt%d")
in
match int_ty with
| Isize -> isize
| I8 -> Printf.sprintf i_format 8
| I16 -> Printf.sprintf i_format 16
| I32 -> Printf.sprintf i_format 32
| I64 -> Printf.sprintf i_format 64
| I128 -> Printf.sprintf i_format 128
| Usize -> usize
| U8 -> Printf.sprintf u_format 8
| U16 -> Printf.sprintf u_format 16
| U32 -> Printf.sprintf u_format 32
| U64 -> Printf.sprintf u_format 64
| U128 -> Printf.sprintf u_format 128
(** Small helper to compute the name of a unary operation *)
let unop_name (unop : unop) : string =
match unop with
| Not -> ( match !backend with FStar | Lean -> "not" | Coq -> "negb")
| Neg (int_ty : integer_type) -> (
match !backend with
| Lean -> int_name int_ty ^ ".checked_neg"
| _ -> int_name int_ty ^ "_neg")
| Cast _ -> raise (Failure "Unsupported")
(** Small helper to compute the name of a binary operation (note that many
binary operations like "less than" are extracted to primitive operations,
like [<].
*)
let named_binop_name (binop : E.binop) (int_ty : integer_type) : string =
let binop =
match binop with
| Div -> "div"
| Rem -> "rem"
| Add -> "add"
| Sub -> "sub"
| Mul -> "mul"
| _ -> raise (Failure "Unreachable")
in
match !backend with
| Lean -> int_name int_ty ^ ".checked_" ^ binop
| FStar | Coq -> int_name int_ty ^ "_" ^ binop
(** A list of keywords/identifiers used by the backend and with which we
want to check collision.
Remark: this is useful mostly to look for collisions when generating
names for *variables*.
*)
let keywords () =
let named_unops =
unop_name Not
:: List.map (fun it -> unop_name (Neg it)) T.all_signed_int_types
in
let named_binops = [ E.Div; Rem; Add; Sub; Mul ] in
let named_binops =
List.concat_map
(fun bn -> List.map (fun it -> named_binop_name bn it) T.all_int_types)
named_binops
in
let misc =
match !backend with
| FStar ->
[
"assert";
"assert_norm";
"assume";
"else";
"fun";
"fn";
"FStar";
"FStar.Mul";
"if";
"in";
"include";
"int";
"let";
"list";
"match";
"not";
"open";
"rec";
"scalar_cast";
"then";
"type";
"Type0";
"Type";
"unit";
"val";
"with";
]
| Coq ->
[
"assert";
"Arguments";
"Axiom";
"char_of_byte";
"Check";
"Declare";
"Definition";
"else";
"End";
"fun";
"Fixpoint";
"if";
"in";
"int";
"Inductive";
"Import";
"let";
"Lemma";
"match";
"Module";
"not";
"Notation";
"Proof";
"Qed";
"rec";
"Record";
"Require";
"Scope";
"Search";
"SearchPattern";
"Set";
"then";
(* [tt] is unit *)
"tt";
"type";
"Type";
"unit";
"with";
]
| Lean ->
[
"by";
"class";
"decreasing_by";
"def";
"deriving";
"do";
"else";
"end";
"for";
"have";
"if";
"inductive";
"instance";
"import";
"let";
"macro";
"match";
"namespace";
"opaque";
"open";
"run_cmd";
"set_option";
"simp";
"structure";
"syntax";
"termination_by";
"then";
"Type";
"unsafe";
"where";
"with";
]
in
List.concat [ named_unops; named_binops; misc ]
let assumed_adts () : (assumed_ty * string) list =
List.map
(fun (t, s) ->
if !backend = Lean then
( t,
Printf.sprintf "%c%s"
(Char.uppercase_ascii s.[0])
(String.sub s 1 (String.length s - 1)) )
else (t, s))
[
(State, "state");
(Result, "result");
(Error, "error");
(Fuel, "nat");
(Option, "option");
(Vec, "vec");
]
let assumed_structs : (assumed_ty * string) list = []
let assumed_variants () : (assumed_ty * VariantId.id * string) list =
match !backend with
| FStar ->
[
(Result, result_return_id, "Return");
(Result, result_fail_id, "Fail");
(Error, error_failure_id, "Failure");
(Error, error_out_of_fuel_id, "OutOfFuel");
(* No Fuel::Zero on purpose *)
(* No Fuel::Succ on purpose *)
(Option, option_some_id, "Some");
(Option, option_none_id, "None");
]
| Coq ->
[
(Result, result_return_id, "Return");
(Result, result_fail_id, "Fail_");
(Error, error_failure_id, "Failure");
(Error, error_out_of_fuel_id, "OutOfFuel");
(Fuel, fuel_zero_id, "O");
(Fuel, fuel_succ_id, "S");
(Option, option_some_id, "Some");
(Option, option_none_id, "None");
]
| Lean ->
[
(Result, result_return_id, "ret");
(Result, result_fail_id, "fail");
(Error, error_failure_id, "panic");
(* No Fuel::Zero on purpose *)
(* No Fuel::Succ on purpose *)
(Option, option_some_id, "some");
(Option, option_none_id, "none");
]
let assumed_llbc_functions :
(A.assumed_fun_id * T.RegionGroupId.id option * string) list =
let rg0 = Some T.RegionGroupId.zero in
[
(Replace, None, "mem_replace_fwd");
(Replace, rg0, "mem_replace_back");
(VecNew, None, "vec_new");
(VecPush, None, "vec_push_fwd") (* Shouldn't be used *);
(VecPush, rg0, "vec_push_back");
(VecInsert, None, "vec_insert_fwd") (* Shouldn't be used *);
(VecInsert, rg0, "vec_insert_back");
(VecLen, None, "vec_len");
(VecIndex, None, "vec_index_fwd");
(VecIndex, rg0, "vec_index_back") (* shouldn't be used *);
(VecIndexMut, None, "vec_index_mut_fwd");
(VecIndexMut, rg0, "vec_index_mut_back");
]
let assumed_pure_functions () : (pure_assumed_fun_id * string) list =
match !backend with
| FStar ->
[
(Return, "return");
(Fail, "fail");
(Assert, "massert");
(FuelDecrease, "decrease");
(FuelEqZero, "is_zero");
]
| Coq ->
(* We don't provide [FuelDecrease] and [FuelEqZero] on purpose *)
[ (Return, "return_"); (Fail, "fail_"); (Assert, "massert") ]
| Lean ->
(* We don't provide [FuelDecrease] and [FuelEqZero] on purpose *)
[ (Return, "return"); (Fail, "fail_"); (Assert, "massert") ]
let names_map_init () : names_map_init =
{
keywords = keywords ();
assumed_adts = assumed_adts ();
assumed_structs;
assumed_variants = assumed_variants ();
assumed_llbc_functions;
assumed_pure_functions = assumed_pure_functions ();
}
let extract_unop (extract_expr : bool -> texpression -> unit)
(fmt : F.formatter) (inside : bool) (unop : unop) (arg : texpression) : unit
=
match unop with
| Not | Neg _ ->
let unop = unop_name unop in
if inside then F.pp_print_string fmt "(";
F.pp_print_string fmt unop;
F.pp_print_space fmt ();
extract_expr true arg;
if inside then F.pp_print_string fmt ")"
| Cast (src, tgt) ->
(* The source type is an implicit parameter *)
if inside then F.pp_print_string fmt "(";
F.pp_print_string fmt "scalar_cast";
F.pp_print_space fmt ();
if !backend <> Lean then (
F.pp_print_string fmt
(StringUtils.capitalize_first_letter
(PrintPure.integer_type_to_string src));
F.pp_print_space fmt ());
if !backend = Lean then F.pp_print_string fmt (int_name tgt)
else
F.pp_print_string fmt
(StringUtils.capitalize_first_letter
(PrintPure.integer_type_to_string tgt));
F.pp_print_space fmt ();
extract_expr true arg;
if inside then F.pp_print_string fmt ")"
let extract_binop (extract_expr : bool -> texpression -> unit)
(fmt : F.formatter) (inside : bool) (binop : E.binop)
(int_ty : integer_type) (arg0 : texpression) (arg1 : texpression) : unit =
if inside then F.pp_print_string fmt "(";
(* Some binary operations have a special treatment *)
(match binop with
| Eq | Lt | Le | Ne | Ge | Gt ->
let binop =
match binop with
| Eq -> "="
| Lt -> "<"
| Le -> "<="
| Ne -> if !backend = Lean then "!=" else "<>"
| Ge -> ">="
| Gt -> ">"
| _ -> raise (Failure "Unreachable")
in
let binop =
match !backend with FStar | Lean -> binop | Coq -> "s" ^ binop
in
extract_expr false arg0;
F.pp_print_space fmt ();
F.pp_print_string fmt binop;
F.pp_print_space fmt ();
extract_expr false arg1
| Div | Rem | Add | Sub | Mul ->
let binop = named_binop_name binop int_ty in
F.pp_print_string fmt binop;
F.pp_print_space fmt ();
extract_expr false arg0;
F.pp_print_space fmt ();
extract_expr false arg1
| BitXor | BitAnd | BitOr | Shl | Shr -> raise Unimplemented);
if inside then F.pp_print_string fmt ")"
let type_decl_kind_to_qualif (kind : decl_kind)
(type_kind : type_decl_kind option) : string =
match !backend with
| FStar -> (
match kind with
| SingleNonRec -> "type"
| SingleRec -> "type"
| MutRecFirst -> "type"
| MutRecInner -> "and"
| MutRecLast -> "and"
| Assumed -> "assume type"
| Declared -> "val")
| Coq -> (
match (kind, type_kind) with
| SingleNonRec, Some Enum -> "Inductive"
| SingleNonRec, Some Struct -> "Record"
| (SingleRec | MutRecFirst), Some _ -> "Inductive"
| (MutRecInner | MutRecLast), Some _ ->
(* Coq doesn't support groups of mutually recursive definitions which mix
* records and inducties: we convert everything to records if this happens
*)
"with"
| (Assumed | Declared), None -> "Axiom"
| _ -> raise (Failure "Unexpected"))
| Lean -> (
match kind with
| SingleNonRec ->
if type_kind = Some Struct then "structure" else "inductive"
| SingleRec -> "inductive"
| MutRecFirst -> "mutual inductive"
| MutRecInner -> "inductive"
| MutRecLast -> "inductive" (* TODO: need to print end afterwards *)
| Assumed -> "axiom"
| Declared -> "axiom")
let fun_decl_kind_to_qualif (kind : decl_kind) =
match !backend with
| FStar -> (
match kind with
| SingleNonRec -> "let"
| SingleRec -> "let rec"
| MutRecFirst -> "let rec"
| MutRecInner -> "and"
| MutRecLast -> "and"
| Assumed -> "assume val"
| Declared -> "val")
| Coq -> (
match kind with
| SingleNonRec -> "Definition"
| SingleRec -> "Fixpoint"
| MutRecFirst -> "Fixpoint"
| MutRecInner -> "with"
| MutRecLast -> "with"
| Assumed -> "Axiom"
| Declared -> "Axiom")
| Lean -> (
match kind with
| SingleNonRec -> "def"
| SingleRec -> "def"
| MutRecFirst -> "mutual def"
| MutRecInner -> "def"
| MutRecLast -> "def" (* TODO: need to print end afterwards *)
| Assumed -> "axiom"
| Declared -> "axiom")
(**
[ctx]: we use the context to lookup type definitions, to retrieve type names.
This is used to compute variable names, when they have no basenames: in this
case we use the first letter of the type name.
[variant_concatenate_type_name]: if true, add the type name as a prefix
to the variant names.
Ex.:
In Rust:
{[
enum List = {
Cons(u32, Box<List>),x
Nil,
}
]}
F*, if option activated:
{[
type list =
| ListCons : u32 -> list -> list
| ListNil : list
]}
F*, if option not activated:
{[
type list =
| Cons : u32 -> list -> list
| Nil : list
]}
Rk.: this should be true by default, because in Rust all the variant names
are actively uniquely identifier by the type name [List::Cons(...)], while
in other languages it is not necessarily the case, and thus clashes can mess
up type checking. Note that some languages actually forbids the name clashes
(it is the case of F* ).
*)
let mk_formatter (ctx : trans_ctx) (crate_name : string)
(variant_concatenate_type_name : bool) : formatter =
let int_name = int_name in
(* Prepare a name.
* The first id elem is always the crate: if it is the local crate,
* we remove it.
* We also remove all the disambiguators, then convert everything to strings.
* **Rmk:** because we remove the disambiguators, there may be name collisions
* (which is ok, because we check for name collisions and fail if there is any).
*)
let get_name (name : name) : string list =
(* Rmk.: initially we only filtered the disambiguators equal to 0 *)
let name = Names.filter_disambiguators name in
match name with
| Ident crate :: name ->
let name = if crate = crate_name then name else Ident crate :: name in
let name =
List.map
(function
| Names.Ident s -> s
| Disambiguator d -> Names.Disambiguator.to_string d)
name
in
name
| _ ->
raise (Failure ("Unexpected name shape: " ^ Print.name_to_string name))
in
let get_type_name = get_name in
let type_name_to_camel_case name =
let name = get_type_name name in
let name = List.map to_camel_case name in
String.concat "" name
in
let type_name_to_snake_case name =
let name = get_type_name name in
let name = List.map to_snake_case name in
let name = String.concat "_" name in
match !backend with
| FStar | Lean -> name
| Coq -> capitalize_first_letter name
in
let type_name name = type_name_to_snake_case name ^ "_t" in
let field_name (def_name : name) (field_id : FieldId.id)
(field_name : string option) : string =
let def_name = type_name_to_snake_case def_name ^ "_" in
match field_name with
| Some field_name -> def_name ^ field_name
| None -> def_name ^ FieldId.to_string field_id
in
let variant_name (def_name : name) (variant : string) : string =
let variant = to_camel_case variant in
if variant_concatenate_type_name then
type_name_to_camel_case def_name ^ variant
else variant
in
let struct_constructor (basename : name) : string =
let tname = type_name basename in
let prefix = match !backend with FStar -> "Mk" | Lean | Coq -> "mk" in
prefix ^ tname
in
let get_fun_name = get_name in
let fun_name_to_snake_case (fname : fun_name) : string =
let fname = get_fun_name fname in
(* Converting to snake case should be a no-op, but it doesn't cost much *)
let fname = List.map to_snake_case fname in
(* Concatenate the elements *)
String.concat "_" fname
in
let global_name (name : global_name) : string =
(* Converting to snake case also lowercases the letters (in Rust, global
* names are written in capital letters). *)
let parts = List.map to_snake_case (get_name name) in
String.concat "_" parts
in
let fun_name (fname : fun_name) (num_loops : int) (loop_id : LoopId.id option)
(num_rgs : int) (rg : region_group_info option) (filter_info : bool * int)
: string =
let fname = fun_name_to_snake_case fname in
(* Compute the suffix *)
let suffix = default_fun_suffix num_loops loop_id num_rgs rg filter_info in
(* Concatenate *)
fname ^ suffix
in
let termination_measure_name (_fid : A.FunDeclId.id) (fname : fun_name)
(num_loops : int) (loop_id : LoopId.id option) : string =
let fname = fun_name_to_snake_case fname in
let lp_suffix = default_fun_loop_suffix num_loops loop_id in
(* Compute the suffix *)
let suffix =
match !Config.backend with
| FStar -> "_decreases"
| Lean -> "_terminates"
| Coq -> raise (Failure "Unexpected")
in
(* Concatenate *)
fname ^ lp_suffix ^ suffix
in
let decreases_proof_name (_fid : A.FunDeclId.id) (fname : fun_name)
(num_loops : int) (loop_id : LoopId.id option) : string =
let fname = fun_name_to_snake_case fname in
let lp_suffix = default_fun_loop_suffix num_loops loop_id in
(* Compute the suffix *)
let suffix =
match !Config.backend with
| Lean -> "_decreases"
| FStar | Coq -> raise (Failure "Unexpected")
in
(* Concatenate *)
fname ^ lp_suffix ^ suffix
in
let opaque_pre () =
match !Config.backend with FStar | Coq -> "" | Lean -> "opaque_defs."
in
let var_basename (_varset : StringSet.t) (basename : string option) (ty : ty)
: string =
(* If there is a basename, we use it *)
match basename with
| Some basename ->
(* This should be a no-op *)
to_snake_case basename
| None -> (
(* No basename: we use the first letter of the type *)
match ty with
| Adt (type_id, tys) -> (
match type_id with
| Tuple ->
(* The "pair" case is frequent enough to have its special treatment *)
if List.length tys = 2 then "p" else "t"
| Assumed Result -> "r"
| Assumed Error -> ConstStrings.error_basename
| Assumed Fuel -> ConstStrings.fuel_basename
| Assumed Option -> "opt"
| Assumed Vec -> "v"
| Assumed State -> ConstStrings.state_basename
| AdtId adt_id ->
let def =
TypeDeclId.Map.find adt_id ctx.type_context.type_decls
in
(* We do the following:
* - compute the type name, and retrieve the last ident
* - convert this to snake case
* - take the first letter of every "letter group"
* Ex.: ["hashmap"; "HashMap"] ~~> "HashMap" -> "hash_map" -> "hm"
*)
(* Thename shouldn't be empty, and its last element should
* be an ident *)
let cl = List.nth def.name (List.length def.name - 1) in
let cl = to_snake_case (Names.as_ident cl) in
let cl = String.split_on_char '_' cl in
let cl = List.filter (fun s -> String.length s > 0) cl in
assert (List.length cl > 0);
let cl = List.map (fun s -> s.[0]) cl in
StringUtils.string_of_chars cl)
| TypeVar _ -> (
(* TODO: use "t" also for F* *)
match !backend with
| FStar -> "x" (* lacking inspiration here... *)
| Coq | Lean -> "t" (* lacking inspiration here... *))
| Bool -> "b"
| Char -> "c"
| Integer _ -> "i"
| Str -> "s"
| Arrow _ -> "f"
| Array _ | Slice _ -> raise Unimplemented)
in
let type_var_basename (_varset : StringSet.t) (basename : string) : string =
(* Rust type variables are snake-case and start with a capital letter *)
match !backend with
| FStar ->
(* This is *not* a no-op: this removes the capital letter *)
to_snake_case basename
| Coq | Lean -> basename
in
let append_index (basename : string) (i : int) : string =
basename ^ string_of_int i
in
let extract_primitive_value (fmt : F.formatter) (inside : bool)
(cv : primitive_value) : unit =
match cv with
| Scalar sv -> (
match !backend with
| FStar -> F.pp_print_string fmt (Z.to_string sv.PV.value)
| Coq ->
if inside then F.pp_print_string fmt "(";
(* We need to add parentheses if the value is negative *)
if sv.PV.value >= Z.of_int 0 then
F.pp_print_string fmt (Z.to_string sv.PV.value)
else F.pp_print_string fmt ("(" ^ Z.to_string sv.PV.value ^ ")");
F.pp_print_string fmt ("%" ^ int_name sv.PV.int_ty);
if inside then F.pp_print_string fmt ")"
| Lean ->
F.pp_print_string fmt "(";
F.pp_print_string fmt (int_name sv.int_ty);
F.pp_print_string fmt ".ofNatCore ";
Z.pp_print fmt sv.value;
F.pp_print_string fmt " (by intlit))")
| Bool b ->
let b = if b then "true" else "false" in
F.pp_print_string fmt b
| Char c -> (
match !backend with
| FStar | Lean -> F.pp_print_string fmt ("'" ^ String.make 1 c ^ "'")
| Coq ->
if inside then F.pp_print_string fmt "(";
F.pp_print_string fmt "char_of_byte";
F.pp_print_space fmt ();
(* Convert the the char to ascii *)
let c =
let i = Char.code c in
let x0 = i / 16 in
let x1 = i mod 16 in
"Coq.Init.Byte.x" ^ string_of_int x0 ^ string_of_int x1
in
F.pp_print_string fmt c;
if inside then F.pp_print_string fmt ")")
| String s ->
(* We need to replace all the line breaks *)
let s =
StringUtils.map
(fun c -> if c = '\n' then "\n" else String.make 1 c)
s
in
F.pp_print_string fmt ("\"" ^ s ^ "\"")
in
let bool_name = if !backend = Lean then "Bool" else "bool" in
let char_name = if !backend = Lean then "Char" else "char" in
let str_name = if !backend = Lean then "String" else "string" in
{
bool_name;
char_name;
int_name;
str_name;
type_decl_kind_to_qualif;
fun_decl_kind_to_qualif;
field_name;
variant_name;
struct_constructor;
type_name;
global_name;
fun_name;
termination_measure_name;
decreases_proof_name;
opaque_pre;
var_basename;
type_var_basename;
append_index;
extract_primitive_value;
extract_unop;
extract_binop;
}
let mk_formatter_and_names_map (ctx : trans_ctx) (crate_name : string)
(variant_concatenate_type_name : bool) : formatter * names_map =
let fmt = mk_formatter ctx crate_name variant_concatenate_type_name in
let names_map = initialize_names_map fmt (names_map_init ()) in
(fmt, names_map)
(** In Coq, a group of definitions must be ended with a "." *)
let print_decl_end_delimiter (fmt : F.formatter) (kind : decl_kind) =
if !backend = Coq && decl_is_last_from_group kind then (
F.pp_print_cut fmt ();
F.pp_print_string fmt ".")
let unit_name () = match !backend with Lean -> "Unit" | Coq | FStar -> "unit"
(** [inside] constrols whether we should add parentheses or not around type
applications (if [true] we add parentheses).
*)
let rec extract_ty (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(ty : ty) : unit =
let extract_rec = extract_ty ctx fmt in
match ty with
| Adt (type_id, tys) -> (
match type_id with
| Tuple ->
(* This is a bit annoying, but in F*/Coq [()] is not the unit type:
* we have to write [unit]... *)
if tys = [] then F.pp_print_string fmt (unit_name ())
else (
F.pp_print_string fmt "(";
Collections.List.iter_link
(fun () ->
F.pp_print_space fmt ();
let product =
match !backend with FStar -> "&" | Coq -> "*" | Lean -> "×"
in
F.pp_print_string fmt product;
F.pp_print_space fmt ())
(extract_rec true) tys;
F.pp_print_string fmt ")")
| AdtId _ | Assumed _ ->
let print_paren = inside && tys <> [] in
if print_paren then F.pp_print_string fmt "(";
(* TODO: for now, only the opaque *functions* are extracted in the
opaque module. The opaque *types* are assumed. *)
let with_opaque_pre = false in
F.pp_print_string fmt (ctx_get_type with_opaque_pre type_id ctx);
if tys <> [] then F.pp_print_space fmt ();
Collections.List.iter_link (F.pp_print_space fmt) (extract_rec true)
tys;
if print_paren then F.pp_print_string fmt ")")
| TypeVar vid -> F.pp_print_string fmt (ctx_get_type_var vid ctx)
| Bool -> F.pp_print_string fmt ctx.fmt.bool_name
| Char -> F.pp_print_string fmt ctx.fmt.char_name
| Integer int_ty -> F.pp_print_string fmt (ctx.fmt.int_name int_ty)
| Str -> F.pp_print_string fmt ctx.fmt.str_name
| Arrow (arg_ty, ret_ty) ->
if inside then F.pp_print_string fmt "(";
extract_rec false arg_ty;
F.pp_print_space fmt ();
F.pp_print_string fmt "->";
F.pp_print_space fmt ();
extract_rec false ret_ty;
if inside then F.pp_print_string fmt ")"
| Array _ | Slice _ -> raise Unimplemented
(** Compute the names for all the top-level identifiers used in a type
definition (type name, variant names, field names, etc. but not type
parameters).
We need to do this preemptively, beforce extracting any definition,
because of recursive definitions.
*)
let extract_type_decl_register_names (ctx : extraction_ctx) (def : type_decl) :
extraction_ctx =
(* Compute and register the type def name *)
let ctx = ctx_add_type_decl def ctx in
(* Compute and register:
* - the variant names, if this is an enumeration
* - the field names, if this is a structure
*)
let ctx =
match def.kind with
| Struct fields ->
(* Add the fields *)
let ctx =
fst
(ctx_add_fields def (FieldId.mapi (fun id f -> (id, f)) fields) ctx)
in
(* Add the constructor name *)
fst (ctx_add_struct def ctx)
| Enum variants ->
fst
(ctx_add_variants def
(VariantId.mapi (fun id v -> (id, v)) variants)
ctx)
| Opaque ->
(* Nothing to do *)
ctx
in
(* Return *)
ctx
(** Print the variants *)
let extract_type_decl_variant (ctx : extraction_ctx) (fmt : F.formatter)
(type_name : string) (type_params : string list) (cons_name : string)
(fields : field list) : unit =
F.pp_print_space fmt ();
(* variant box *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* [| Cons :]
* Note that we really don't want any break above so we print everything
* at once. *)
F.pp_print_string fmt ("| " ^ cons_name ^ " :");
F.pp_print_space fmt ();
let print_field (fid : FieldId.id) (f : field) (ctx : extraction_ctx) :
extraction_ctx =
(* Open the field box *)
F.pp_open_box fmt ctx.indent_incr;
(* Print the field names, if the backend accepts it.
* [ x :]
* Note that when printing fields, we register the field names as
* *variables*: they don't need to be unique at the top level. *)
let ctx =
match !backend with
| FStar -> (
match f.field_name with
| None -> ctx
| Some field_name ->
let var_id = VarId.of_int (FieldId.to_int fid) in
let field_name =
ctx.fmt.var_basename ctx.names_map.names_set (Some field_name)
f.field_ty
in
let ctx, field_name = ctx_add_var field_name var_id ctx in
F.pp_print_string fmt (field_name ^ " :");
F.pp_print_space fmt ();
ctx)
| Coq | Lean -> ctx
in
(* Print the field type *)
extract_ty ctx fmt false f.field_ty;
(* Print the arrow [->]*)
F.pp_print_space fmt ();
F.pp_print_string fmt "->";
(* Close the field box *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Return *)
ctx
in
(* Print the fields *)
let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in
let _ =
List.fold_left (fun ctx (fid, f) -> print_field fid f ctx) ctx fields
in
(* Print the final type *)
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt type_name;
List.iter
(fun type_param ->
F.pp_print_space fmt ();
F.pp_print_string fmt type_param)
type_params;
F.pp_close_box fmt ();
(* Close the variant box *)
F.pp_close_box fmt ()
(* TODO: we don' need the [def_name] paramter: it can be retrieved from the context *)
let extract_type_decl_enum_body (ctx : extraction_ctx) (fmt : F.formatter)
(def : type_decl) (def_name : string) (type_params : string list)
(variants : variant list) : unit =
(* We want to generate a definition which looks like this (taking F* as example):
{[
type list a = | Cons : a -> list a -> list a | Nil : list a
]}
If there isn't enough space on one line:
{[
type s =
| Cons : a -> list a -> list a
| Nil : list a
]}
And if we need to write the type of a variant on several lines:
{[
type s =
| Cons :
a ->
list a ->
list a
| Nil : list a
]}
Finally, it is possible to give names to the variant fields in Rust.
In this situation, we generate a definition like this:
{[
type s =
| Cons : hd:a -> tl:list a -> list a
| Nil : list a
]}
Note that we already printed: [type s =]
*)
let print_variant variant_id v =
let cons_name = ctx_get_variant (AdtId def.def_id) variant_id ctx in
let fields = v.fields in
extract_type_decl_variant ctx fmt def_name type_params cons_name fields
in
(* Print the variants *)
let variants = VariantId.mapi (fun vid v -> (vid, v)) variants in
List.iter (fun (vid, v) -> print_variant vid v) variants
let extract_type_decl_struct_body (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (def : type_decl) (type_params : string list)
(fields : field list) : unit =
(* We want to generate a definition which looks like this (taking F* as example):
{[
type t = { x : int; y : bool; }
]}
If there isn't enough space on one line:
{[
type t =
{
x : int; y : bool;
}
]}
And if there is even less space:
{[
type t =
{
x : int;
y : bool;
}
]}
Also, in case there are no fields, we need to define the type as [unit]
([type t = {}] doesn't work in F* ).
Coq:
====
We need to define the constructor name upon defining the struct (record, in Coq).
The syntex is:
{[
Record Foo = mkFoo { x : int; y : bool; }.
}]
Also, Coq doesn't support groups of mutually recursive inductives and records.
This is fine, because we can then define records as inductives, and leverage
the fact that when record fields are accessed, the records are symbolically
expanded which introduces let bindings of the form: [let RecordCons ... = x in ...].
As a consequence, we never use the record projectors (unless we reconstruct
them in the micro passes of course).
*)
(* Note that we already printed: [type t =] *)
let is_rec = decl_is_from_rec_group kind in
let _ =
if !backend = FStar && fields = [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt (unit_name ()))
else if (not is_rec) || !backend = FStar then (
F.pp_print_space fmt ();
(* If Coq: print the constructor name *)
(* TODO: remove superfluous test not is_rec below *)
if !backend = Coq && not is_rec then (
let with_opaque_pre = false in
F.pp_print_string fmt
(ctx_get_struct with_opaque_pre (AdtId def.def_id) ctx);
F.pp_print_string fmt " ");
if !backend <> Lean then F.pp_print_string fmt "{";
F.pp_print_break fmt 1 ctx.indent_incr;
(* The body itself *)
F.pp_open_hvbox fmt 0;
(* Print the fields *)
let print_field (field_id : FieldId.id) (f : field) : unit =
let field_name = ctx_get_field (AdtId def.def_id) field_id ctx in
F.pp_open_box fmt ctx.indent_incr;
F.pp_print_string fmt field_name;
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
extract_ty ctx fmt false f.field_ty;
if !backend <> Lean then F.pp_print_string fmt ";";
F.pp_close_box fmt ()
in
let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in
Collections.List.iter_link (F.pp_print_space fmt)
(fun (fid, f) -> print_field fid f)
fields;
(* Close *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
if !backend <> Lean then F.pp_print_string fmt "}")
else (
(* We extract for Coq, and we have a recursive record, or a record in
a group of mutually recursive types: we extract it as an inductive type
*)
assert (is_rec && !backend = Coq);
let with_opaque_pre = false in
let cons_name = ctx_get_struct with_opaque_pre (AdtId def.def_id) ctx in
let def_name = ctx_get_local_type with_opaque_pre def.def_id ctx in
extract_type_decl_variant ctx fmt def_name type_params cons_name fields)
in
()
(** Extract a nestable, muti-line comment *)
let extract_comment (fmt : F.formatter) (s : string) : unit =
match !backend with
| Coq | FStar ->
F.pp_print_string fmt "(** ";
F.pp_print_string fmt s;
F.pp_print_string fmt " *)"
| Lean ->
F.pp_print_string fmt "/- ";
F.pp_print_string fmt s;
F.pp_print_string fmt " -/"
(** Extract a type declaration.
Note that all the names used for extraction should already have been
registered.
*)
let extract_type_decl (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (def : type_decl) : unit =
let extract_body =
match kind with
| SingleNonRec | SingleRec | MutRecFirst | MutRecInner | MutRecLast -> true
| Assumed | Declared -> false
in
let type_kind =
if extract_body then
match def.kind with
| Struct _ -> Some Struct
| Enum _ -> Some Enum
| Opaque -> None
else None
in
(* If in Coq and the declaration is opaque, it must have the shape:
[Axiom Ident : forall (T0 ... Tn : Type), ... -> ... -> ...].
The boolean [is_opaque_coq] is used to detect this case.
*)
let is_opaque = type_kind = None in
let is_opaque_coq = !backend = Coq && is_opaque in
let use_forall = is_opaque_coq && def.type_params <> [] in
(* Retrieve the definition name *)
let with_opaque_pre = false in
let def_name = ctx_get_local_type with_opaque_pre def.def_id ctx in
(* Add the type params - note that we need those bindings only for the
* body translation (they are not top-level) *)
let ctx_body, type_params = ctx_add_type_params def.type_params ctx in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt ("[" ^ Print.name_to_string def.name ^ "]");
F.pp_print_space fmt ();
(* Open a box for the definition, so that whenever possible it gets printed on
* one line *)
F.pp_open_hvbox fmt 0;
(* Open a box for "type TYPE_NAME (TYPE_PARAMS) =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "type TYPE_NAME" *)
let qualif = ctx.fmt.type_decl_kind_to_qualif kind type_kind in
F.pp_print_string fmt (qualif ^ " " ^ def_name);
(* Print the type parameters *)
let type_keyword =
match !backend with FStar -> "Type0" | Coq | Lean -> "Type"
in
if def.type_params <> [] then (
if use_forall then (
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "forall");
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
List.iter
(fun (p : type_var) ->
let pname = ctx_get_type_var p.index ctx_body in
F.pp_print_string fmt pname;
F.pp_print_space fmt ())
def.type_params;
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt (type_keyword ^ ")"));
(* Print the "=" if we extract the body*)
if extract_body then (
F.pp_print_space fmt ();
let eq =
match !backend with
| FStar -> "="
| Coq -> ":="
| Lean ->
if type_kind = Some Struct && kind = SingleNonRec then "where"
else ":="
in
F.pp_print_string fmt eq)
else (
(* Otherwise print ": Type0" *)
if use_forall then F.pp_print_string fmt ","
else (
F.pp_print_space fmt ();
F.pp_print_string fmt ":");
F.pp_print_space fmt ();
F.pp_print_string fmt type_keyword);
(* Close the box for "type TYPE_NAME (TYPE_PARAMS) =" *)
F.pp_close_box fmt ();
(if extract_body then
match def.kind with
| Struct fields ->
extract_type_decl_struct_body ctx_body fmt kind def type_params fields
| Enum variants ->
extract_type_decl_enum_body ctx_body fmt def def_name type_params
variants
| Opaque -> raise (Failure "Unreachable"));
(* If Coq: end the definition with a "." *)
print_decl_end_delimiter fmt kind;
(* Close the box for the definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Auxiliary function.
Generate [Arguments] instructions in Coq.
*)
let extract_type_decl_coq_arguments (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (decl : type_decl) : unit =
assert (!backend = Coq);
(* Generating the [Arguments] instructions is useful only if there are type parameters *)
if decl.type_params = [] then ()
else
(* Add the type params - note that we need those bindings only for the
* body translation (they are not top-level) *)
let _ctx_body, type_params = ctx_add_type_params decl.type_params ctx in
(* Auxiliary function to extract an [Arguments Cons {T} _ _.] instruction *)
let extract_arguments_info (cons_name : string) (fields : 'a list) : unit =
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Open a box *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Small utility *)
let print_type_vars () =
List.iter
(fun (var : string) ->
F.pp_print_space fmt ();
F.pp_print_string fmt ("{" ^ var ^ "}"))
type_params
in
let print_fields () =
List.iter
(fun _ ->
F.pp_print_space fmt ();
F.pp_print_string fmt "_")
fields
in
F.pp_print_break fmt 0 0;
F.pp_print_string fmt "Arguments";
F.pp_print_space fmt ();
F.pp_print_string fmt cons_name;
print_type_vars ();
print_fields ();
F.pp_print_string fmt ".";
(* Close the box *)
F.pp_close_box fmt ()
in
(* Generate the [Arguments] instruction *)
match decl.kind with
| Opaque -> ()
| Struct fields ->
let adt_id = AdtId decl.def_id in
(* Generate the instruction for the record constructor *)
let with_opaque_pre = false in
let cons_name = ctx_get_struct with_opaque_pre adt_id ctx in
extract_arguments_info cons_name fields;
(* Generate the instruction for the record projectors, if there are *)
let is_rec = decl_is_from_rec_group kind in
if not is_rec then
FieldId.iteri
(fun fid _ ->
let cons_name = ctx_get_field adt_id fid ctx in
extract_arguments_info cons_name [])
fields;
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
| Enum variants ->
(* Generate the instructions *)
VariantId.iteri
(fun vid (v : variant) ->
let cons_name = ctx_get_variant (AdtId decl.def_id) vid ctx in
extract_arguments_info cons_name v.fields)
variants;
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Auxiliary function.
Generate field projectors in Coq.
Sometimes we extract records as inductives in Coq: when this happens we
have to define the field projectors afterwards.
*)
let extract_type_decl_record_field_projectors (ctx : extraction_ctx)
(fmt : F.formatter) (kind : decl_kind) (decl : type_decl) : unit =
assert (!backend = Coq);
match decl.kind with
| Opaque | Enum _ -> ()
| Struct fields ->
(* Records are extracted as inductives only if they are recursive *)
let is_rec = decl_is_from_rec_group kind in
if is_rec then
(* Add the type params *)
let ctx, type_params = ctx_add_type_params decl.type_params ctx in
let ctx, record_var = ctx_add_var "x" (VarId.of_int 0) ctx in
let ctx, field_var = ctx_add_var "x" (VarId.of_int 1) ctx in
let with_opaque_pre = false in
let def_name = ctx_get_local_type with_opaque_pre decl.def_id ctx in
let cons_name =
ctx_get_struct with_opaque_pre (AdtId decl.def_id) ctx
in
let extract_field_proj (field_id : FieldId.id) (_ : field) : unit =
F.pp_print_space fmt ();
(* Outer box for the projector definition *)
F.pp_open_hvbox fmt 0;
(* Inner box for the projector definition *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for the [Definition PROJ ... :=] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "Definition";
F.pp_print_space fmt ();
let field_name = ctx_get_field (AdtId decl.def_id) field_id ctx in
F.pp_print_string fmt field_name;
F.pp_print_space fmt ();
(* Print the type parameters *)
if type_params <> [] then (
F.pp_print_string fmt "{";
List.iter
(fun p ->
F.pp_print_string fmt p;
F.pp_print_space fmt ())
type_params;
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "Type}";
F.pp_print_space fmt ());
(* Print the record parameter *)
F.pp_print_string fmt "(";
F.pp_print_string fmt record_var;
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt def_name;
List.iter
(fun p ->
F.pp_print_space fmt ();
F.pp_print_string fmt p)
type_params;
F.pp_print_string fmt ")";
(* *)
F.pp_print_space fmt ();
F.pp_print_string fmt ":=";
(* Close the box for the [Definition PROJ ... :=] *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open a box for the whole match *)
F.pp_open_hvbox fmt 0;
(* Open a box for the [match ... with] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "match";
F.pp_print_space fmt ();
F.pp_print_string fmt record_var;
F.pp_print_space fmt ();
F.pp_print_string fmt "with";
(* Close the box for the [match ... with] *)
F.pp_close_box fmt ();
(* Open a box for the branch *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the match branch *)
F.pp_print_space fmt ();
F.pp_print_string fmt "|";
F.pp_print_space fmt ();
F.pp_print_string fmt cons_name;
FieldId.iteri
(fun id _ ->
F.pp_print_space fmt ();
if field_id = id then F.pp_print_string fmt field_var
else F.pp_print_string fmt "_")
fields;
F.pp_print_space fmt ();
F.pp_print_string fmt "=>";
F.pp_print_space fmt ();
F.pp_print_string fmt field_var;
(* Close the box for the branch *)
F.pp_close_box fmt ();
(* Print the [end] *)
F.pp_print_space fmt ();
F.pp_print_string fmt "end";
(* Close the box for the whole match *)
F.pp_close_box fmt ();
(* Close the inner box projector *)
F.pp_close_box fmt ();
(* If Coq: end the definition with a "." *)
print_decl_end_delimiter fmt kind;
(* Close the outer box projector *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
in
let extract_proj_notation (field_id : FieldId.id) (_ : field) : unit =
F.pp_print_space fmt ();
(* Outer box for the projector definition *)
F.pp_open_hvbox fmt 0;
(* Inner box for the projector definition *)
F.pp_open_hovbox fmt ctx.indent_incr;
let ctx, record_var = ctx_add_var "x" (VarId.of_int 0) ctx in
F.pp_print_string fmt "Notation";
F.pp_print_space fmt ();
let field_name = ctx_get_field (AdtId decl.def_id) field_id ctx in
F.pp_print_string fmt ("\"" ^ record_var ^ " .(" ^ field_name ^ ")\"");
F.pp_print_space fmt ();
F.pp_print_string fmt ":=";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
F.pp_print_string fmt field_name;
F.pp_print_space fmt ();
F.pp_print_string fmt record_var;
F.pp_print_string fmt ")";
F.pp_print_space fmt ();
F.pp_print_string fmt "(at level 9)";
(* Close the inner box projector *)
F.pp_close_box fmt ();
(* If Coq: end the definition with a "." *)
print_decl_end_delimiter fmt kind;
(* Close the outer box projector *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
in
let extract_field_proj_and_notation (field_id : FieldId.id)
(field : field) : unit =
extract_field_proj field_id field;
extract_proj_notation field_id field
in
FieldId.iteri extract_field_proj_and_notation fields
(** Extract extra information for a type (e.g., [Arguments] instructions in Coq).
Note that all the names used for extraction should already have been
registered.
*)
let extract_type_decl_extra_info (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (decl : type_decl) : unit =
match !backend with
| FStar | Lean -> ()
| Coq ->
extract_type_decl_coq_arguments ctx fmt kind decl;
extract_type_decl_record_field_projectors ctx fmt kind decl
(** Extract the state type declaration. *)
let extract_state_type (fmt : F.formatter) (ctx : extraction_ctx)
(kind : decl_kind) : unit =
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment *)
extract_comment fmt "The state type used in the state-error monad";
F.pp_print_space fmt ();
(* Open a box for the definition, so that whenever possible it gets printed on
* one line *)
F.pp_open_hvbox fmt 0;
(* Retrieve the name *)
let state_name = ctx_get_assumed_type State ctx in
(* The syntax for Lean and Coq is almost identical. *)
let print_axiom () =
if !backend = Coq then F.pp_print_string fmt "Axiom"
else F.pp_print_string fmt "axiom";
F.pp_print_space fmt ();
F.pp_print_string fmt state_name;
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "Type";
if !backend = Coq then F.pp_print_string fmt "."
in
(* The kind should be [Assumed] or [Declared] *)
(match kind with
| SingleNonRec | SingleRec | MutRecFirst | MutRecInner | MutRecLast ->
raise (Failure "Unexpected")
| Assumed -> (
match !backend with
| FStar ->
F.pp_print_string fmt "assume";
F.pp_print_space fmt ();
F.pp_print_string fmt "type";
F.pp_print_space fmt ();
F.pp_print_string fmt state_name;
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "Type0"
| Coq | Lean -> print_axiom ())
| Declared -> (
match !backend with
| FStar ->
F.pp_print_string fmt "val";
F.pp_print_space fmt ();
F.pp_print_string fmt state_name;
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "Type0"
| Coq | Lean -> print_axiom ()));
(* Close the box for the definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Compute the names for all the pure functions generated from a rust function
(forward function and backward functions).
*)
let extract_fun_decl_register_names (ctx : extraction_ctx) (keep_fwd : bool)
(has_decreases_clause : fun_decl -> bool) (def : pure_fun_translation) :
extraction_ctx =
let (fwd, loop_fwds), back_ls = def in
(* Register the decrease clauses, if necessary *)
let register_decreases ctx def =
if has_decreases_clause def then
(* Add the termination measure *)
let ctx = ctx_add_termination_measure def ctx in
(* Add the decreases proof for Lean only *)
match !Config.backend with
| Coq | FStar -> ctx
| Lean -> ctx_add_decreases_proof def ctx
else ctx
in
let ctx = List.fold_left register_decreases ctx (fwd :: loop_fwds) in
let register_fun ctx f = ctx_add_fun_decl (keep_fwd, def) f ctx in
let register_funs ctx fl = List.fold_left register_fun ctx fl in
(* Register the forward functions' names *)
let ctx = register_funs ctx (fwd :: loop_fwds) in
(* Register the backward functions' names *)
let ctx =
List.fold_left
(fun ctx (back, loop_backs) ->
let ctx = register_fun ctx back in
register_funs ctx loop_backs)
ctx back_ls
in
(* Return *)
ctx
(** Simply add the global name to the context. *)
let extract_global_decl_register_names (ctx : extraction_ctx)
(def : A.global_decl) : extraction_ctx =
ctx_add_global_decl_and_body def ctx
(** The following function factorizes the extraction of ADT values.
Note that patterns can introduce new variables: we thus return an extraction
context updated with new bindings.
TODO: we don't need something very generic anymore (some definitions used
to be polymorphic).
TODO: this does roughly the same thing as extract_adt_cons -- make the
latter call the former
*)
let extract_adt_g_value
(extract_value : extraction_ctx -> bool -> 'v -> extraction_ctx)
(fmt : F.formatter) (ctx : extraction_ctx) (inside : bool)
(variant_id : VariantId.id option) (field_values : 'v list) (ty : ty) :
extraction_ctx =
match ty with
| Adt (Tuple, _) ->
(* Tuple *)
(* This is very annoying: in Coq, we can't write [()] for the value of
type [unit], we have to write [tt]. *)
if !backend = Coq && field_values = [] then (
F.pp_print_string fmt "tt";
ctx)
else (
F.pp_print_string fmt "(";
let ctx =
Collections.List.fold_left_link
(fun () ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun ctx v -> extract_value ctx false v)
ctx field_values
in
F.pp_print_string fmt ")";
ctx)
| Adt (adt_id, _) ->
(* "Regular" ADT *)
(* We print something of the form: [Cons field0 ... fieldn].
* We could update the code to print something of the form:
* [{ field0=...; ...; fieldn=...; }] in case of structures.
*)
let cons =
(* The ADT shouldn't be opaque *)
let with_opaque_pre = false in
match variant_id with
| Some vid ->
if !backend = Lean then
ctx_get_type with_opaque_pre adt_id ctx
^ "."
^ ctx_get_variant adt_id vid ctx
else ctx_get_variant adt_id vid ctx
| None -> ctx_get_struct with_opaque_pre adt_id ctx
in
if inside && field_values <> [] then F.pp_print_string fmt "(";
F.pp_print_string fmt cons;
let ctx =
Collections.List.fold_left
(fun ctx v ->
F.pp_print_space fmt ();
extract_value ctx true v)
ctx field_values
in
if inside && field_values <> [] then F.pp_print_string fmt ")";
ctx
| _ -> raise (Failure "Inconsistent typed value")
(* Extract globals in the same way as variables *)
let extract_global (ctx : extraction_ctx) (fmt : F.formatter)
(id : A.GlobalDeclId.id) : unit =
let with_opaque_pre = ctx.use_opaque_pre in
F.pp_print_string fmt (ctx_get_global with_opaque_pre id ctx)
(** [inside]: see {!extract_ty}.
As a pattern can introduce new variables, we return an extraction context
updated with new bindings.
*)
let rec extract_typed_pattern (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (v : typed_pattern) : extraction_ctx =
match v.value with
| PatConstant cv ->
ctx.fmt.extract_primitive_value fmt inside cv;
ctx
| PatVar (v, _) ->
let vname =
ctx.fmt.var_basename ctx.names_map.names_set v.basename v.ty
in
let ctx, vname = ctx_add_var vname v.id ctx in
F.pp_print_string fmt vname;
ctx
| PatDummy ->
F.pp_print_string fmt "_";
ctx
| PatAdt av ->
let extract_value ctx inside v = extract_typed_pattern ctx fmt inside v in
extract_adt_g_value extract_value fmt ctx inside av.variant_id
av.field_values v.ty
(** [inside]: controls the introduction of parentheses. See [extract_ty]
TODO: replace the formatting boolean [inside] with something more general?
Also, it seems we don't really use it...
Cases to consider:
- right-expression in a let: [let x = re in _] (never parentheses?)
- next expression in a let: [let x = _ in next_e] (never parentheses?)
- application argument: [f (exp)]
- match/if scrutinee: [if exp then _ else _]/[match exp | _ -> _]
*)
let rec extract_texpression (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (e : texpression) : unit =
match e.e with
| Var var_id ->
let var_name = ctx_get_var var_id ctx in
F.pp_print_string fmt var_name
| Const cv -> ctx.fmt.extract_primitive_value fmt inside cv
| App _ ->
let app, args = destruct_apps e in
extract_App ctx fmt inside app args
| Abs _ ->
let xl, e = destruct_abs_list e in
extract_Abs ctx fmt inside xl e
| Qualif _ ->
(* We use the app case *)
extract_App ctx fmt inside e []
| Let (_, _, _, _) -> extract_lets ctx fmt inside e
| Switch (scrut, body) -> extract_Switch ctx fmt inside scrut body
| Meta (_, e) -> extract_texpression ctx fmt inside e
| Loop _ ->
(* The loop nodes should have been eliminated in {!PureMicroPasses} *)
raise (Failure "Unreachable")
(* Extract an application *or* a top-level qualif (function extraction has
* to handle top-level qualifiers, so it seemed more natural to merge the
* two cases) *)
and extract_App (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(app : texpression) (args : texpression list) : unit =
(* We don't do the same thing if the app is a top-level identifier (function,
* ADT constructor...) or a "regular" expression *)
match app.e with
| Qualif qualif -> (
(* Top-level qualifier *)
match qualif.id with
| FunOrOp fun_id ->
extract_function_call ctx fmt inside fun_id qualif.type_args args
| Global global_id -> extract_global ctx fmt global_id
| AdtCons adt_cons_id ->
extract_adt_cons ctx fmt inside adt_cons_id qualif.type_args args
| Proj proj ->
extract_field_projector ctx fmt inside app proj qualif.type_args args)
| _ ->
(* "Regular" expression *)
(* Open parentheses *)
if inside then F.pp_print_string fmt "(";
(* Open a box for the application *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the app expression *)
let app_inside = (inside && args = []) || args <> [] in
extract_texpression ctx fmt app_inside app;
(* Print the arguments *)
List.iter
(fun ve ->
F.pp_print_space fmt ();
extract_texpression ctx fmt true ve)
args;
(* Close the box for the application *)
F.pp_close_box fmt ();
(* Close parentheses *)
if inside then F.pp_print_string fmt ")"
(** Subcase of the app case: function call *)
and extract_function_call (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (fid : fun_or_op_id) (type_args : ty list)
(args : texpression list) : unit =
match (fid, args) with
| Unop unop, [ arg ] ->
(* A unop can have *at most* one argument (the result can't be a function!).
* Note that the way we generate the translation, we shouldn't get the
* case where we have no argument (all functions are fully instantiated,
* and no AST transformation introduces partial calls). *)
ctx.fmt.extract_unop (extract_texpression ctx fmt) fmt inside unop arg
| Binop (binop, int_ty), [ arg0; arg1 ] ->
(* Number of arguments: similar to unop *)
ctx.fmt.extract_binop
(extract_texpression ctx fmt)
fmt inside binop int_ty arg0 arg1
| Fun fun_id, _ ->
if inside then F.pp_print_string fmt "(";
(* Open a box for the function call *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the function name *)
let with_opaque_pre = ctx.use_opaque_pre in
let fun_name = ctx_get_function with_opaque_pre fun_id ctx in
F.pp_print_string fmt fun_name;
(* Print the type parameters *)
List.iter
(fun ty ->
F.pp_print_space fmt ();
extract_ty ctx fmt true ty)
type_args;
(* Print the arguments *)
List.iter
(fun ve ->
F.pp_print_space fmt ();
extract_texpression ctx fmt true ve)
args;
(* Close the box for the function call *)
F.pp_close_box fmt ();
(* Return *)
if inside then F.pp_print_string fmt ")"
| (Unop _ | Binop _), _ ->
raise
(Failure
("Unreachable:\n" ^ "Function: " ^ show_fun_or_op_id fid
^ ",\nNumber of arguments: "
^ string_of_int (List.length args)
^ ",\nArguments: "
^ String.concat " " (List.map show_texpression args)))
(** Subcase of the app case: ADT constructor *)
and extract_adt_cons (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(adt_cons : adt_cons_id) (type_args : ty list) (args : texpression list) :
unit =
match adt_cons.adt_id with
| Tuple ->
(* Tuple *)
(* For now, we only support fully applied tuple constructors *)
(* This is very annoying: in Coq, we can't write [()] for the value of
type [unit], we have to write [tt]. *)
assert (List.length type_args = List.length args);
if !backend = Coq && args = [] then F.pp_print_string fmt "tt"
else (
F.pp_print_string fmt "(";
Collections.List.iter_link
(fun () ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun v -> extract_texpression ctx fmt false v)
args;
F.pp_print_string fmt ")")
| _ ->
(* "Regular" ADT *)
(* We print something of the form: [Cons field0 ... fieldn].
* We could update the code to print something of the form:
* [{ field0=...; ...; fieldn=...; }] in case of fully
* applied structure constructors.
*)
let cons =
(* The ADT shouldn't be opaque *)
let with_opaque_pre = false in
match adt_cons.variant_id with
| Some vid ->
if !backend = Lean then
ctx_get_type with_opaque_pre adt_cons.adt_id ctx
^ "."
^ ctx_get_variant adt_cons.adt_id vid ctx
else ctx_get_variant adt_cons.adt_id vid ctx
| None -> ctx_get_struct with_opaque_pre adt_cons.adt_id ctx
in
let is_lean_struct = !backend = Lean && adt_cons.variant_id = None in
if is_lean_struct then (
(* TODO: when only one or two fields differ, considering using the with
syntax (peephole optimization) *)
let decl_id =
match adt_cons.adt_id with AdtId id -> id | _ -> assert false
in
let def_kind =
(TypeDeclId.Map.find decl_id ctx.trans_ctx.type_context.type_decls)
.kind
in
let fields =
match def_kind with T.Struct fields -> fields | _ -> assert false
in
let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in
F.pp_open_hvbox fmt 0;
F.pp_open_hvbox fmt ctx.indent_incr;
F.pp_print_string fmt "{";
F.pp_print_space fmt ();
F.pp_open_hvbox fmt ctx.indent_incr;
F.pp_open_hvbox fmt 0;
Collections.List.iter_link
(fun () ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun ((fid, _), e) ->
F.pp_open_hvbox fmt ctx.indent_incr;
let f = ctx_get_field adt_cons.adt_id fid ctx in
F.pp_print_string fmt f;
F.pp_print_string fmt " := ";
F.pp_open_hvbox fmt ctx.indent_incr;
extract_texpression ctx fmt true e;
F.pp_close_box fmt ();
F.pp_close_box fmt ())
(List.combine fields args);
F.pp_close_box fmt ();
F.pp_close_box fmt ();
F.pp_close_box fmt ();
F.pp_print_space fmt ();
F.pp_print_string fmt "}";
F.pp_close_box fmt ())
else
let use_parentheses = inside && args <> [] in
if use_parentheses then F.pp_print_string fmt "(";
F.pp_print_string fmt cons;
Collections.List.iter
(fun v ->
F.pp_print_space fmt ();
extract_texpression ctx fmt true v)
args;
if use_parentheses then F.pp_print_string fmt ")"
(** Subcase of the app case: ADT field projector. *)
and extract_field_projector (ctx : extraction_ctx) (fmt : F.formatter)
(inside : bool) (original_app : texpression) (proj : projection)
(_proj_type_params : ty list) (args : texpression list) : unit =
(* We isolate the first argument (if there is), in order to pretty print the
* projection ([x.field] instead of [MkAdt?.field x] *)
match args with
| [ arg ] ->
(* Exactly one argument: pretty-print *)
let field_name = ctx_get_field proj.adt_id proj.field_id ctx in
(* Open a box *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Extract the expression *)
extract_texpression ctx fmt true arg;
(* We allow to break where the "." appears (except Lean, it's a syntax error) *)
if !backend <> Lean then F.pp_print_break fmt 0 0;
F.pp_print_string fmt ".";
(* If in Coq, the field projection has to be parenthesized *)
(match !backend with
| FStar -> F.pp_print_string fmt field_name
| Coq -> F.pp_print_string fmt ("(" ^ field_name ^ ")")
| Lean -> F.pp_print_string fmt field_name);
(* Close the box *)
F.pp_close_box fmt ()
| arg :: args ->
(* Call extract_App again, but in such a way that the first argument is
* isolated *)
extract_App ctx fmt inside (mk_app original_app arg) args
| [] ->
(* No argument: shouldn't happen *)
raise (Failure "Unreachable")
and extract_Abs (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(xl : typed_pattern list) (e : texpression) : unit =
(* Open a box for the abs expression *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Open parentheses *)
if inside then F.pp_print_string fmt "(";
(* Print the lambda - note that there should always be at least one variable *)
assert (xl <> []);
F.pp_print_string fmt "fun";
let ctx =
List.fold_left
(fun ctx x ->
F.pp_print_space fmt ();
extract_typed_pattern ctx fmt true x)
ctx xl
in
F.pp_print_space fmt ();
F.pp_print_string fmt "->";
F.pp_print_space fmt ();
(* Print the body *)
extract_texpression ctx fmt false e;
(* Close parentheses *)
if inside then F.pp_print_string fmt ")";
(* Close the box for the abs expression *)
F.pp_close_box fmt ()
and extract_lets (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(e : texpression) : unit =
let lets, next_e = destruct_lets e in
(* Open a box for the whole expression.
In the case of Lean, we use a vbox so that line breaks are inserted
at the end of every let-binding: let-bindings are indeed not ended
with an "in" keyword.
*)
if !Config.backend = Lean then F.pp_open_vbox fmt 0 else F.pp_open_hvbox fmt 0;
(* Open parentheses *)
if inside && !backend <> Lean then F.pp_print_string fmt "(";
(* Extract the let-bindings *)
let extract_let (ctx : extraction_ctx) (monadic : bool) (lv : typed_pattern)
(re : texpression) : extraction_ctx =
(* Open a box for the let-binding *)
F.pp_open_hovbox fmt ctx.indent_incr;
let is_fstar_monadic = monadic && !backend = FStar in
let ctx =
(* There are two cases:
* - do we use a notation like [x <-- y;]
* - do we use notation with let-bindings
* Note that both notations can be used for monadic let-bindings.
* For instance, in F*, you can write:
* {[
* let* x = y in // monadic
* ...
* ]}
* *)
if monadic && !backend = Coq then (
let ctx = extract_typed_pattern ctx fmt true lv in
F.pp_print_space fmt ();
let arrow =
match !backend with
| Coq -> "<-"
| FStar | Lean -> failwith "impossible"
in
F.pp_print_string fmt arrow;
F.pp_print_space fmt ();
extract_texpression ctx fmt false re;
F.pp_print_string fmt ";";
ctx)
else (
F.pp_print_string fmt (if is_fstar_monadic then "let*" else "let");
F.pp_print_space fmt ();
let ctx = extract_typed_pattern ctx fmt true lv in
F.pp_print_space fmt ();
let eq =
match !backend with
| FStar -> "="
| Coq -> ":="
(* TODO: switch to ⟵ once issues are fixed *)
| Lean -> if monadic then "←" else ":="
in
F.pp_print_string fmt eq;
F.pp_print_space fmt ();
extract_texpression ctx fmt false re;
(* In Lean, monadic let-bindings don't require to end with "in" *)
if !backend <> Lean then (
F.pp_print_space fmt ();
F.pp_print_string fmt "in");
ctx)
in
(* Close the box for the let-binding *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Return *)
ctx
in
let exists_monadic = List.exists (fun (m, _, _) -> m) lets in
(* If Lean, we rely on monadic blocks, so we insert a do and open a new box
immediately *)
if !backend = Lean && exists_monadic then (
F.pp_open_vbox fmt ctx.indent_incr;
F.pp_print_string fmt "do";
F.pp_print_space fmt ());
let ctx =
List.fold_left
(fun ctx (monadic, lv, re) -> extract_let ctx monadic lv re)
ctx lets
in
(* Open a box for the next expression *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the next expression *)
extract_texpression ctx fmt false next_e;
(* Close the box for the next expression *)
F.pp_close_box fmt ();
(* do-box (Lean only) *)
if !backend = Lean && exists_monadic then F.pp_close_box fmt ();
(* Close parentheses *)
if inside && !backend <> Lean then F.pp_print_string fmt ")";
(* Close the box for the whole expression *)
F.pp_close_box fmt ()
and extract_Switch (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
(scrut : texpression) (body : switch_body) : unit =
(* Open a box for the whole expression.
In the case of Lean, we rely on indentation to delimit the end of the
branches, and need to insert line breaks: we thus use a vbox.
*)
if !Config.backend = Lean then F.pp_open_vbox fmt 0 else F.pp_open_hvbox fmt 0;
(* Open parentheses *)
if inside then F.pp_print_string fmt "(";
(* Extract the switch *)
(match body with
| If (e_then, e_else) ->
(* Open a box for the [if e] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "if";
if !backend = Lean then F.pp_print_string fmt " h:";
F.pp_print_space fmt ();
let scrut_inside = PureUtils.texpression_requires_parentheses scrut in
extract_texpression ctx fmt scrut_inside scrut;
(* Close the box for the [if e] *)
F.pp_close_box fmt ();
(* Extract the branches *)
let extract_branch (is_then : bool) (e_branch : texpression) : unit =
F.pp_print_space fmt ();
(* Open a box for the then/else+branch *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for the then/else + space + opening parenthesis *)
F.pp_open_hovbox fmt 0;
let then_or_else = if is_then then "then" else "else" in
F.pp_print_string fmt then_or_else;
let parenth = PureUtils.texpression_requires_parentheses e_branch in
(* Open the parenthesized expression *)
let print_space_after_parenth =
if parenth then (
match !backend with
| FStar ->
F.pp_print_space fmt ();
F.pp_print_string fmt "begin";
F.pp_print_space fmt
| Coq | Lean ->
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
F.pp_print_cut fmt)
else F.pp_print_space fmt
in
(* Close the box for the then/else + space + opening parenthesis *)
F.pp_close_box fmt ();
print_space_after_parenth ();
(* Open a box for the branch *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the branch expression *)
extract_texpression ctx fmt false e_branch;
(* Close the box for the branch *)
F.pp_close_box fmt ();
(* Close the parenthesized expression *)
(if parenth then
match !backend with
| FStar ->
F.pp_print_space fmt ();
F.pp_print_string fmt "end"
| Coq | Lean -> F.pp_print_string fmt ")");
(* Close the box for the then/else+branch *)
F.pp_close_box fmt ()
in
extract_branch true e_then;
extract_branch false e_else
| Match branches ->
(* Open a box for the [match ... with] *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the [match ... with] *)
let match_begin =
match !backend with
| FStar -> "begin match"
| Coq -> "match"
| Lean -> "match h:"
in
F.pp_print_string fmt match_begin;
F.pp_print_space fmt ();
let scrut_inside = PureUtils.texpression_requires_parentheses scrut in
extract_texpression ctx fmt scrut_inside scrut;
F.pp_print_space fmt ();
F.pp_print_string fmt "with";
(* Close the box for the [match ... with] *)
F.pp_close_box fmt ();
(* Extract the branches *)
let extract_branch (br : match_branch) : unit =
F.pp_print_space fmt ();
(* Open a box for the pattern+branch *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for the pattern *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the pattern *)
F.pp_print_string fmt "|";
F.pp_print_space fmt ();
let ctx = extract_typed_pattern ctx fmt false br.pat in
F.pp_print_space fmt ();
let arrow = match !backend with FStar -> "->" | Coq | Lean -> "=>" in
F.pp_print_string fmt arrow;
(* Close the box for the pattern *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open a box for the branch *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the branch itself *)
extract_texpression ctx fmt false br.branch;
(* Close the box for the branch *)
F.pp_close_box fmt ();
(* Close the box for the pattern+branch *)
F.pp_close_box fmt ()
in
List.iter extract_branch branches;
(* End the match - we rely on indentation in Lean *)
if !backend <> Lean then (
F.pp_print_space fmt ();
F.pp_print_string fmt "end"));
(* Close parentheses *)
if inside then F.pp_print_string fmt ")";
(* Close the box for the whole expression *)
F.pp_close_box fmt ()
(** Insert a space, if necessary *)
let insert_req_space (fmt : F.formatter) (space : bool ref) : unit =
if !space then space := false else F.pp_print_space fmt ()
(** A small utility to print the parameters of a function signature.
We return two contexts:
- the context augmented with bindings for the type parameters
- the previous context augmented with bindings for the input values
*)
let extract_fun_parameters (space : bool ref) (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : extraction_ctx * extraction_ctx =
(* Add the type parameters - note that we need those bindings only for the
* body translation (they are not top-level) *)
let ctx, _ = ctx_add_type_params def.signature.type_params ctx in
(* Print the parameters - rk.: we should have filtered the functions
* with no input parameters *)
(* The type parameters *)
if def.signature.type_params <> [] then (
(* Open a box for the type parameters *)
F.pp_open_hovbox fmt 0;
insert_req_space fmt space;
F.pp_print_string fmt "(";
List.iter
(fun (p : type_var) ->
let pname = ctx_get_type_var p.index ctx in
F.pp_print_string fmt pname;
F.pp_print_space fmt ())
def.signature.type_params;
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
let type_keyword =
match !backend with FStar -> "Type0" | Coq | Lean -> "Type"
in
F.pp_print_string fmt (type_keyword ^ ")");
(* Close the box for the type parameters *)
F.pp_close_box fmt ());
(* The input parameters - note that doing this adds bindings to the context *)
let ctx_body =
match def.body with
| None -> ctx
| Some body ->
List.fold_left
(fun ctx (lv : typed_pattern) ->
insert_req_space fmt space;
(* Open a box for the input parameter *)
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "(";
let ctx = extract_typed_pattern ctx fmt false lv in
F.pp_print_space fmt ();
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
extract_ty ctx fmt false lv.ty;
F.pp_print_string fmt ")";
(* Close the box for the input parameters *)
F.pp_close_box fmt ();
ctx)
ctx body.inputs_lvs
in
(ctx, ctx_body)
(** A small utility to print the types of the input parameters in the form:
[u32 -> list u32 -> ...]
(we don't print the return type of the function)
This is used for opaque function declarations, in particular.
*)
let extract_fun_input_parameters_types (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
let extract_param (ty : ty) : unit =
let inside = false in
extract_ty ctx fmt inside ty;
F.pp_print_space fmt ();
F.pp_print_string fmt "->";
F.pp_print_space fmt ()
in
List.iter extract_param def.signature.inputs
let assert_backend_supports_decreases_clauses () =
match !backend with
| FStar | Lean -> ()
| _ -> failwith "decreases clauses only supported for the Lean & F* backends"
(** Extract a decreases clause function template body.
For F* only.
In order to help the user, we can generate a template for the functions
required by the decreases clauses for. We simply generate definitions of
the following form in a separate file:
{[
let f_decrease (t : Type0) (x : t) : nat = admit()
]}
Where the translated functions for [f] look like this:
{[
let f_fwd (t : Type0) (x : t) : Tot ... (decreases (f_decrease t x)) = ...
]}
*)
let extract_template_fstar_decreases_clause (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
assert (!backend = FStar);
(* Retrieve the function name *)
let def_name = ctx_get_termination_measure def.def_id def.loop_id ctx in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt
("[" ^ Print.fun_name_to_string def.basename ^ "]: decreases clause");
F.pp_print_space fmt ();
(* Open a box for the definition, so that whenever possible it gets printed on
* one line *)
F.pp_open_hvbox fmt 0;
(* Add the [unfold] keyword *)
F.pp_print_string fmt "unfold";
F.pp_print_space fmt ();
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "let FUN_NAME" *)
F.pp_print_string fmt ("let " ^ def_name);
F.pp_print_space fmt ();
(* Extract the parameters *)
let space = ref true in
let _, _ = extract_fun_parameters space ctx fmt def in
insert_req_space fmt space;
F.pp_print_string fmt ":";
(* Print the signature *)
F.pp_print_space fmt ();
F.pp_print_string fmt "nat";
(* Print the "=" *)
F.pp_print_space fmt ();
F.pp_print_string fmt "=";
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Print the "admit ()" *)
F.pp_print_string fmt "admit ()";
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_close_box fmt ();
(* Close the box for the whole definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Extract templates for the [termination_by] and [decreases_by] clauses of a
recursive function definition.
For Lean only.
We extract two commands. The first one is a regular definition for the
termination measure (the value derived from the function arguments that
decreases over function calls). The second one is a macro definition that
defines a proof script (allowed to refer to function arguments) that proves
termination.
*)
let extract_template_lean_termination_and_decreasing (ctx : extraction_ctx)
(fmt : F.formatter) (def : fun_decl) : unit =
assert (!backend = Lean);
(*
* Extract a template for the termination measure
*)
(* Retrieve the function name *)
let def_name = ctx_get_termination_measure def.def_id def.loop_id ctx in
let def_body = Option.get def.body in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt
("[" ^ Print.fun_name_to_string def.basename ^ "]: termination measure");
F.pp_print_space fmt ();
(* Open a box for the definition, so that whenever possible it gets printed on
* one line *)
F.pp_open_hvbox fmt 0;
(* Add the [unfold] keyword *)
F.pp_print_string fmt "@[simp]";
F.pp_print_space fmt ();
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "let FUN_NAME" *)
F.pp_print_string fmt ("def " ^ def_name);
F.pp_print_space fmt ();
(* Extract the parameters *)
let space = ref true in
let _, ctx_body = extract_fun_parameters space ctx fmt def in
(* Print the ":=" *)
F.pp_print_space fmt ();
F.pp_print_string fmt ":=";
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Tuple of the arguments *)
let vars = List.map (fun (v : var) -> v.id) def_body.inputs in
if List.length vars = 1 then
F.pp_print_string fmt (ctx_get_var (List.hd vars) ctx_body)
else (
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "(";
Collections.List.iter_link
(fun () ->
F.pp_print_string fmt ",";
F.pp_print_space fmt ())
(fun v -> F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
F.pp_print_string fmt ")";
F.pp_close_box fmt ());
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT = admit()" *)
F.pp_close_box fmt ();
(* Close the box for the whole definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0;
(*
* Extract a template for the decreases proof
*)
let def_name = ctx_get_decreases_proof def.def_id def.loop_id ctx in
(* syntax <def_name> term ... term : tactic *)
F.pp_print_break fmt 0 0;
extract_comment fmt
("[" ^ Print.fun_name_to_string def.basename ^ "]: decreases_by tactic");
F.pp_print_space fmt ();
F.pp_open_hvbox fmt 0;
F.pp_print_string fmt "syntax \"";
F.pp_print_string fmt def_name;
F.pp_print_string fmt "\" term+ : tactic";
F.pp_print_break fmt 0 0;
(* macro_rules | `(tactic| fact_termination_proof $x) => `(tactic| ( *)
F.pp_print_string fmt "macro_rules";
F.pp_print_space fmt ();
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_open_hovbox fmt 0;
F.pp_print_string fmt "| `(tactic| ";
F.pp_print_string fmt def_name;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt "$";
F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
F.pp_print_string fmt ") =>";
F.pp_close_box fmt ();
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "`(tactic| sorry)";
F.pp_close_box fmt ();
F.pp_close_box fmt ();
F.pp_close_box fmt ();
F.pp_print_break fmt 0 0
(** Extract a function declaration.
Note that all the names used for extraction should already have been
registered.
We take the definition of the forward translation as parameter (which is
equal to the definition to extract, if we extract a forward function) because
it is useful for the decrease clause.
*)
let extract_fun_decl (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (has_decreases_clause : bool) (def : fun_decl) : unit =
assert (not def.is_global_decl_body);
(* Retrieve the function name *)
let with_opaque_pre = false in
let def_name =
ctx_get_local_function with_opaque_pre def.def_id def.loop_id def.back_id
ctx
in
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment to link the extracted type to its original rust definition *)
extract_comment fmt ("[" ^ Print.fun_name_to_string def.basename ^ "]");
F.pp_print_space fmt ();
(* Open two boxes for the definition, so that whenever possible it gets printed on
* one line and indents are correct *)
F.pp_open_hvbox fmt 0;
F.pp_open_vbox fmt ctx.indent_incr;
(* Open a box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* > "let FUN_NAME" *)
let is_opaque = Option.is_none def.body in
(* If in Coq and the declaration is opaque, it must have the shape:
[Axiom Ident : forall (T0 ... Tn : Type), ... -> ... -> ...].
The boolean [is_opaque_coq] is used to detect this case.
*)
let is_opaque_coq = !backend = Coq && is_opaque in
let use_forall = is_opaque_coq && def.signature.type_params <> [] in
(* *)
let qualif = ctx.fmt.fun_decl_kind_to_qualif kind in
(* For Lean: we generate a record of assumed functions *)
if not (!backend = Lean && (kind = Assumed || kind = Declared)) then (
F.pp_print_string fmt qualif;
F.pp_print_space fmt ());
F.pp_print_string fmt def_name;
F.pp_print_space fmt ();
if use_forall then (
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
F.pp_print_string fmt "forall");
(* Open a box for "(PARAMS) : EFFECT =" *)
F.pp_open_hvbox fmt 0;
(* Open a box for "(PARAMS) :" *)
F.pp_open_hovbox fmt 0;
let space = ref true in
let ctx, ctx_body = extract_fun_parameters space ctx fmt def in
(* Print the return type - note that we have to be careful when
* printing the input values for the decrease clause, because
* it introduces bindings in the context... We thus "forget"
* the bindings we introduced above.
* TODO: figure out a cleaner way *)
let _ =
if use_forall then F.pp_print_string fmt ","
else (
insert_req_space fmt space;
F.pp_print_string fmt ":");
(* Close the box for "(PARAMS) :" *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open a box for the EFFECT *)
F.pp_open_hvbox fmt 0;
(* Open a box for the return type *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the return type *)
(* For opaque definitions, as we don't have named parameters under the hand,
* we don't print parameters in the form [(x : a) (y : b) ...] above,
* but wait until here to print the types: [a -> b -> ...]. *)
if is_opaque then extract_fun_input_parameters_types ctx fmt def;
(* [Tot] *)
if has_decreases_clause then (
assert_backend_supports_decreases_clauses ();
if !backend = FStar then (
F.pp_print_string fmt "Tot";
F.pp_print_space fmt ()));
extract_ty ctx fmt has_decreases_clause def.signature.output;
(* Close the box for the return type *)
F.pp_close_box fmt ();
(* Print the decrease clause - rk.: a function with a decreases clause
* is necessarily a transparent function *)
if has_decreases_clause && !backend = FStar then (
assert_backend_supports_decreases_clauses ();
F.pp_print_space fmt ();
(* Open a box for the decreases clause *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* *)
F.pp_print_string fmt "(decreases (";
F.pp_print_cut fmt ();
(* Open a box for the decreases term *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* The name of the decrease clause *)
let decr_name = ctx_get_termination_measure def.def_id def.loop_id ctx in
F.pp_print_string fmt decr_name;
(* Print the type parameters *)
List.iter
(fun (p : type_var) ->
let pname = ctx_get_type_var p.index ctx in
F.pp_print_space fmt ();
F.pp_print_string fmt pname)
def.signature.type_params;
(* Print the input values: we have to be careful here to print
* only the input values which are in common with the *forward*
* function (the additional input values "given back" to the
* backward functions have no influence on termination: we thus
* share the decrease clauses between the forward and the backward
* functions - we also ignore the additional state received by the
* backward function, if there is one).
*)
let inputs_lvs =
let all_inputs = (Option.get def.body).inputs_lvs in
let num_fwd_inputs =
def.signature.info.num_fwd_inputs_with_fuel_with_state
in
Collections.List.prefix num_fwd_inputs all_inputs
in
let _ =
List.fold_left
(fun ctx (lv : typed_pattern) ->
F.pp_print_space fmt ();
let ctx = extract_typed_pattern ctx fmt false lv in
ctx)
ctx inputs_lvs
in
F.pp_print_string fmt "))";
(* Close the box for the decreases term *)
F.pp_close_box fmt ();
(* Close the box for the decreases clause *)
F.pp_close_box fmt ());
(* Close the box for the EFFECT *)
F.pp_close_box fmt ()
in
(* Print the "=" *)
if not is_opaque then (
F.pp_print_space fmt ();
let eq = match !backend with FStar -> "=" | Coq | Lean -> ":=" in
F.pp_print_string fmt eq);
(* Close the box for "(PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
(* Close the box for "let FUN_NAME (PARAMS) : EFFECT =" *)
F.pp_close_box fmt ();
if not is_opaque then (
F.pp_print_space fmt ();
(* Open a box for the body *)
F.pp_open_hvbox fmt 0;
(* Extract the body *)
let _ = extract_texpression ctx_body fmt false (Option.get def.body).body in
(* Close the box for the body *)
F.pp_close_box fmt ());
(* Close the inner box for the definition *)
F.pp_close_box fmt ();
(* Coq: add a "." *)
print_decl_end_delimiter fmt kind;
(* Termination clause and proof for Lean *)
if has_decreases_clause && !backend = Lean then (
let def_body = Option.get def.body in
let all_vars = List.map (fun (v : var) -> v.id) def_body.inputs in
let num_fwd_inputs =
def.signature.info.num_fwd_inputs_with_fuel_with_state
in
let vars = Collections.List.prefix num_fwd_inputs all_vars in
(* termination_by *)
let terminates_name =
ctx_get_termination_measure def.def_id def.loop_id ctx
in
F.pp_print_break fmt 0 0;
(* Open a box for the whole [termination_by CALL => DECREASES] *)
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open a box for {termination_by CALL =>} *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "termination_by";
F.pp_print_space fmt ();
F.pp_print_string fmt def_name;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_var v ctx_body))
all_vars;
F.pp_print_space fmt ();
F.pp_print_string fmt "=>";
(* Close the box for [termination_by CALL =>] *)
F.pp_close_box fmt ();
F.pp_print_space fmt ();
(* Open the box for [DECREASES] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt terminates_name;
List.iter
(fun (p : type_var) ->
let pname = ctx_get_type_var p.index ctx in
F.pp_print_space fmt ();
F.pp_print_string fmt pname)
def.signature.type_params;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
(* Close the box for [DECREASES] *)
F.pp_close_box fmt ();
(* Close the box for the whole [termination_by CALL => DECREASES] *)
F.pp_close_box fmt ();
F.pp_print_break fmt 0 0;
(* Open a box for the [decreasing by ...] *)
F.pp_open_hvbox fmt ctx.indent_incr;
let decreases_name = ctx_get_decreases_proof def.def_id def.loop_id ctx in
F.pp_print_string fmt "decreasing_by";
F.pp_print_space fmt ();
F.pp_open_hvbox fmt ctx.indent_incr;
F.pp_print_string fmt decreases_name;
List.iter
(fun v ->
F.pp_print_space fmt ();
F.pp_print_string fmt (ctx_get_var v ctx_body))
vars;
F.pp_close_box fmt ();
(* Close the box for the [decreasing by ...] *)
F.pp_close_box fmt ());
(* Close the outer box for the definition *)
F.pp_close_box fmt ();
(* Add breaks to insert new lines between definitions *)
F.pp_print_break fmt 0 0
(** Extract a global declaration body of the shape "QUALIF NAME : TYPE = BODY"
with a custom body extractor
*)
let extract_global_decl_body (ctx : extraction_ctx) (fmt : F.formatter)
(kind : decl_kind) (name : string) (ty : ty)
(extract_body : (F.formatter -> unit) Option.t) : unit =
let is_opaque = Option.is_none extract_body in
(* Open the definition boxes (depth=0) *)
F.pp_open_hvbox fmt 0;
F.pp_open_hvbox fmt ctx.indent_incr;
(* Open "QUALIF NAME : TYPE =" box (depth=1) *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print "QUALIF NAME " *)
F.pp_print_string fmt (ctx.fmt.fun_decl_kind_to_qualif kind);
F.pp_print_space fmt ();
F.pp_print_string fmt name;
F.pp_print_space fmt ();
(* Open ": TYPE =" box (depth=2) *)
F.pp_open_hvbox fmt 0;
(* Print ": " *)
F.pp_print_string fmt ":";
F.pp_print_space fmt ();
(* Open "TYPE" box (depth=3) *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print "TYPE" *)
extract_ty ctx fmt false ty;
(* Close "TYPE" box (depth=3) *)
F.pp_close_box fmt ();
if not is_opaque then (
(* Print " =" *)
F.pp_print_space fmt ();
let eq = match !backend with FStar -> "=" | Coq | Lean -> ":=" in
F.pp_print_string fmt eq);
(* Close ": TYPE =" box (depth=2) *)
F.pp_close_box fmt ();
(* Close "QUALIF NAME : TYPE =" box (depth=1) *)
F.pp_close_box fmt ();
if not is_opaque then (
F.pp_print_space fmt ();
(* Open "BODY" box (depth=1) *)
F.pp_open_hvbox fmt 0;
(* Print "BODY" *)
(Option.get extract_body) fmt;
(* Close "BODY" box (depth=1) *)
F.pp_close_box fmt ());
(* Close the inner definition box (depth=0) *)
F.pp_close_box fmt ();
(* Coq: add a "." *)
print_decl_end_delimiter fmt Declared;
(* Close the outer definition box (depth=0) *)
F.pp_close_box fmt ()
(** Extract a global declaration.
We generate the body which computes the global value separately from the
value declaration itself.
For example in Rust,
[static X: u32 = 3;]
will be translated to the following F*:
[let x_body : result u32 = Return 3]
[let x_c : u32 = eval_global x_body]
*)
let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter)
(global : A.global_decl) (body : fun_decl) (interface : bool) : unit =
assert body.is_global_decl_body;
assert (Option.is_none body.back_id);
assert (List.length body.signature.inputs = 0);
assert (List.length body.signature.doutputs = 1);
assert (List.length body.signature.type_params = 0);
(* Add a break then the name of the corresponding LLBC declaration *)
F.pp_print_break fmt 0 0;
extract_comment fmt ("[" ^ Print.global_name_to_string global.name ^ "]");
F.pp_print_space fmt ();
let with_opaque_pre = false in
let decl_name = ctx_get_global with_opaque_pre global.def_id ctx in
let body_name =
ctx_get_function with_opaque_pre
(FromLlbc (Regular global.body_id, None, None))
ctx
in
let decl_ty, body_ty =
let ty = body.signature.output in
if body.signature.info.effect_info.can_fail then (unwrap_result_ty ty, ty)
else (ty, mk_result_ty ty)
in
match body.body with
| None ->
let kind = if interface then Declared else Assumed in
extract_global_decl_body ctx fmt kind decl_name decl_ty None
| Some body ->
extract_global_decl_body ctx fmt SingleNonRec body_name body_ty
(Some (fun fmt -> extract_texpression ctx fmt false body.body));
F.pp_print_break fmt 0 0;
extract_global_decl_body ctx fmt SingleNonRec decl_name decl_ty
(Some
(fun fmt ->
let body =
match !backend with
| FStar -> "eval_global " ^ body_name
| Lean -> "eval_global " ^ body_name ^ " (by simp)"
| Coq -> body_name ^ "%global"
in
F.pp_print_string fmt body));
(* Add a break to insert lines between declarations *)
F.pp_print_break fmt 0 0
(** Extract a unit test, if the function is a unit function (takes no
parameters, returns unit).
A unit test simply checks that the function normalizes to [Return ()].
F*:
{[
let _ = assert_norm (FUNCTION = Return ())
]}
Coq:
{[
Check (FUNCTION)%return).
]}
*)
let extract_unit_test_if_unit_fun (ctx : extraction_ctx) (fmt : F.formatter)
(def : fun_decl) : unit =
(* We only insert unit tests for forward functions *)
assert (def.back_id = None);
(* Check if this is a unit function *)
let sg = def.signature in
if
sg.type_params = []
&& (sg.inputs = [ mk_unit_ty ] || sg.inputs = [])
&& sg.output = mk_result_ty mk_unit_ty
then (
(* Add a break before *)
F.pp_print_break fmt 0 0;
(* Print a comment *)
extract_comment fmt
("Unit test for [" ^ Print.fun_name_to_string def.basename ^ "]");
F.pp_print_space fmt ();
(* Open a box for the test *)
F.pp_open_hovbox fmt ctx.indent_incr;
(* Print the test *)
(match !backend with
| FStar ->
F.pp_print_string fmt "let _ =";
F.pp_print_space fmt ();
F.pp_print_string fmt "assert_norm";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
(* Note that if the function is opaque, the unit test will fail
because the normalizer will get stuck *)
let with_opaque_pre = ctx.use_opaque_pre in
let fun_name =
ctx_get_local_function with_opaque_pre def.def_id def.loop_id
def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_space fmt ();
F.pp_print_string fmt "=";
F.pp_print_space fmt ();
let success = ctx_get_variant (Assumed Result) result_return_id ctx in
F.pp_print_string fmt (success ^ " ())")
| Coq ->
F.pp_print_string fmt "Check";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
(* Note that if the function is opaque, the unit test will fail
because the normalizer will get stuck *)
let with_opaque_pre = ctx.use_opaque_pre in
let fun_name =
ctx_get_local_function with_opaque_pre def.def_id def.loop_id
def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_space fmt ();
F.pp_print_string fmt ")%return."
| Lean ->
F.pp_print_string fmt "#assert";
F.pp_print_space fmt ();
F.pp_print_string fmt "(";
(* Note that if the function is opaque, the unit test will fail
because the normalizer will get stuck *)
let with_opaque_pre = ctx.use_opaque_pre in
let fun_name =
ctx_get_local_function with_opaque_pre def.def_id def.loop_id
def.back_id ctx
in
F.pp_print_string fmt fun_name;
if sg.inputs <> [] then (
F.pp_print_space fmt ();
F.pp_print_string fmt "()");
F.pp_print_space fmt ();
F.pp_print_string fmt "==";
F.pp_print_space fmt ();
let success = ctx_get_variant (Assumed Result) result_return_id ctx in
F.pp_print_string fmt ("." ^ success ^ " ())"));
(* Close the box for the test *)
F.pp_close_box fmt ();
(* Add a break after *)
F.pp_print_break fmt 0 0)
else (* Do nothing *)
()
|